Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ rồi nhâ
từ câu a) ta thấy AB là tiếp tuyến của đường tròn (J) đường kính CD
gọi P,Q lần lượt là giao của AD và (O),BC và (J)
có góc APB=CQD=90 độ (góc nt chắn nx đg tròn)
=>góc DPB= góc BQD=90 độ
=>tugiac BQPD là tgnt =>góc PDB= góc PQI(1)
Vì AC//BD nên góc PDB=góc IAC(2)
từ (1) và (2) =>góc PQI= góc IAC
=>tgPQI đồng dạng tgCAI(g.g)
=>PI/CI=QI/AI
=>IP.IA=IC.IQ
=>phương tích của điểm I đối vs (O) và (J) = nhau
=>I nằm trên trục đẳng phương EF của 2 đg tròn
Vậy I,E,F thằng hàng(dpcm)
Vì D,E là trung điểm của BC và MN nên ta có OD vuông góc với BC và OE vuông góc với MN
VÌ góc ODA + góc OEA = 90 độ + 90 độ = 180 độ nên ODAE là tứ giác nội tiếp
Suy ra A,D,O,E cùng thuộc 1 đường tròn. (đường tròn đường kính AO)
a/
\(d_1;d_2\) là tiếp tuyến với đường tròn tại A và B \(\Rightarrow d_1\perp AB;d_2\perp AB\) => \(d_1\)//\(d_2\)
Xét tg vuông ABK có
\(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow AK^2=KC.KB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có
DA=DC (2 tiếp tuyến của 1 đường tròn cùng xuất phát từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (1)
EC=EB (lý do như trên) => tg EBC cân tại E\(\Rightarrow\widehat{ECB}=\widehat{KBE}\) (2 góc ở đáy của tg cân) (*)
\(\widehat{KBE}=\widehat{AKB}\) (góc so le trong) (**)
\(\widehat{KCD}=\widehat{ECB}\) (Góc đối đỉnh) (***)
Từ (*) (**) và (***) \(\Rightarrow\widehat{AKB}=\widehat{KCD}\) => tg DCK cân tại D => DC=DK (2)
Từ (1) và (2) => DA=DK nên K là trung điểm của AK
c/ Gọi I là giao của CH với BD
Ta có
\(CH\perp AB;d_1\perp AB\) => CH//\(d_1\)
\(\Rightarrow\frac{IC}{DK}=\frac{BC}{BK}=\frac{BH}{BA}=\frac{IH}{DA}\) (Talet trong tam giác)
Mà DK=DA => IC=IH => BD đi qua trung điểm I của CH
d/
câu a ý số 2 bạn còn cách nào khác ko? Tại mk chx hc góc nội tiếp chắn nửa đường tròn