Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Sử dụng các tứ giác nội tiếp chứng minh được P M O ^ = P A O ^ và P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)
b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB
Mặt khác MP.NP = P O 2 và PO = R Þ AM.BN = R 2 (ĐPCM)
c, Ta có A M = R 2 => M P = R 2
Mặt khác A M = R 2 => BN = 2R => PN = 2R
Từ đó tìm được MN = 5 R 2
Vì DMON và DAPB đồng dạng nên S M O N S A P B = M N A B 2 = 25 16
d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R
Thể tích hình cầu đó là V = 4 3 πR 3 (đvdt)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
a: Xét tứ giác BHCA có \(\widehat{BHA}=\widehat{BCA}=90^0\)
nên BHCA là tứ giác nội tiếp
=>B,H,C,A cùng thuộc một đường tròn
b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có
\(\widehat{HKA}\) chung
Do đó: ΔKHA đồng dạng với ΔKCB
=>\(\dfrac{KH}{KC}=\dfrac{KA}{KB}\)
=>\(KH\cdot KB=KA\cdot KC\)
c: Gọi giao điểm của KE với BA là M
Xét ΔKBA có
AH,BC là các đường cao
AH cắt BC tại E
Do đó: E là trực tâm của ΔKBA
=>KE\(\perp\)BA tại M
Xét ΔBME vuông tại M và ΔBCA vuông tại C có
\(\widehat{MBE}\) chung
Do đó: ΔBME đồng dạng với ΔBCA
=>\(\dfrac{BM}{BC}=\dfrac{BE}{BA}\)
=>\(BM\cdot BA=BC\cdot BE\)
Xét ΔAME vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAE}\) chung
Do đó: ΔAME đồng dạng với ΔAHB
=>\(\dfrac{AM}{HA}=\dfrac{AE}{AB}\)
=>\(AH\cdot AE=AM\cdot AB\)
\(BC\cdot BE+AH\cdot AE=BM\cdot BA+AM\cdot AB=AB^2\) không đổi
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x4+x3+2x2+x+1=(x4+x3+x2
)+(x2+x+1)=x2
(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3
-3abc=a3+3ab(a+b)+b3+c3
-(3ab(a+b)+3abc)=(a+b)3+c3
-3ab(a+b+c)
=(a+b+c)((a+b)2
-(a+b)c+c2
)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2
-ac-ab+c2
-3ab)=(a+b+c)(a2+b2+c2
-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2
(y-z)+y2
(z-x)+z2
(x-y)=x2
(y-z)-y2
((y-z)+(x-y))+z2
(x-y)
=x2
(y-z)-y2
(y-z)-y2
(x-y)+z2
(x-y)=(y-z)(x2
-y2
)-(x-y)(y2
-z2
)=(y-z)(x2
-2y2+xy+xz+yz)
k mk nha $_$
:D
x y M N A O B 1 2 3 4
a) Vì MA , MI là 2tt của đường tròn (O) , nên ^O1 = ^O2 (1)
Vì NB , NI là 2tt của nửa đường tròn (O) , nên ^O3 = ^O4 (2)
Từ (1) và (2) => \(\widehat{O_2}+\widehat{O_3}=\widehat{O_1}+\widehat{O_4}=\frac{180^o}{2}=90^o\)
Mà ^MON = 90^o
Vậy : ^MON = 90^o
b) Theo t/c 2tt cắt nhau , ta có :
AM = MI ; NI = NB
MN = MI + IN = AM + BN
Vậy : MN = AM + BN ( đpcm )
c) Áp dụng hệ thức lượng tam giác trong tam giác OMN vuông tại O , đường cao OI
Ta có : \(OI^2=IM.IN\)
\(\Rightarrow IM.IN=R^2\)( R bán kính )
Mặt khác : MA = MI ; NB = NT
Vậy : AM . BN = R^2 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét (O) có
CA,CM là tiếp tuyến
nênCA=CM và OC là phân giác của góc AOM(1)
mà OA=OM
nên OC là trung trực của AM
=>OC vuông góc với AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Xét (O)có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>MB vuông góc MA
=>MB//OC
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>OC vuông góc với OD
mà OM vuông góc DC
nên MC*MD=OM^2
=>AC*BD=R^2
c: Gọi H là trung điểm của CD
Xét hình thang ABDC có
H,O lần lượtlà trung điểm của CD,AB
nên HO là đường trung bình
=>HO//AC//BD
=>HO vuông góc với AB
=>AB là tiếp tuyến của (H)
![](https://rs.olm.vn/images/avt/0.png?1311)
* Tam giác MON vuông tại O có đường cao OP nên
OP2 = MP. NP (1)
* Theo tính chất hai tiếp tuyến cắt nhau ta có
MA= MP và NB = NP (2)
Từ (1) và (2) suy ra: OP2 = MA. NB hay R2 = MA. NB ( đpcm)
a) Xét (O) có
NA là tiếp tuyến có A là tiếp điểm(gt)
NE là tiếp tuyến có E là tiếp điểm(gt)
Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{AOE}=2\cdot\widehat{EON}\)
Xét (O) có
ME là tiếp tuyến có E là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)
Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)
hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)
\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)
hay \(\widehat{MON}=90^0\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:
\(ME\cdot NE=OE^2\)
mà OE=R
nên \(ME\cdot NE=R^2\)(đpcm)