Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Khi M ở ngoài hay M nằm trong đường tròn thì ∆MCD và ∆MBA đều có 2 góc bằng nhau => ĐPCM
Tỷ số đồng dạng là: C D A B = 1 2
b, A B C ^ = 30 0 => A O C ^ = 60 0 => l A C ⏜ = πR 3
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
Bài 2 :
A B C D H
a ) Ta có : \(AH\perp BD\Rightarrow\widehat{AHD}=\widehat{BCD}=90^0\)
AD//BC \(\Rightarrow\widehat{ADH}=\widehat{DBC}\)
\(\Rightarrow\Delta AHB~\Delta DCB\left(g.g\right)\)
b ) Ta có : \(AB=12,BC=9\Rightarrow BD=\sqrt{AB^2+BC^2}=15\)
Từ câu a \(\Rightarrow\frac{AH}{CD}=\frac{AB}{DB}\)
\(\Rightarrow AH=\frac{AB.CD}{DB}=\frac{12.12}{15}=\frac{48}{5}\)
c ) Ta có \(\widehat{DAH}=\widehat{ABH}\left(+\widehat{BAH}=90^0\right)\)
\(\widehat{AHB}=\widehat{AHD}=90^0\)
\(\Rightarrow\Delta ADH~\Delta BAH\left(g.g\right)\)
\(\Rightarrow\frac{AH}{BH}=\frac{DH}{AH}\Rightarrow AH.AH=BH.DH\)
a, Sử dụng các tứ giác nội tiếp chứng minh được P M O ^ = P A O ^ và P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)
b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB
Mặt khác MP.NP = P O 2 và PO = R Þ AM.BN = R 2 (ĐPCM)
c, Ta có A M = R 2 => M P = R 2
Mặt khác A M = R 2 => BN = 2R => PN = 2R
Từ đó tìm được MN = 5 R 2
Vì DMON và DAPB đồng dạng nên S M O N S A P B = M N A B 2 = 25 16
d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R
Thể tích hình cầu đó là V = 4 3 πR 3 (đvdt)