Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B O A C D K H E
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.
Bạn tự vé hình nhé! Có 2 cách để vẽ hình
Mình giải câu (d) cho bạn nhé
Ta có: \(\hept{\begin{cases}2S_{\Delta MAN}=MQ\cdot AN\\2S_{\Delta MBN}=MP\cdot BN\end{cases}}\)
Cộng vế với vế ta được \(2S_{\Delta MAN}+2S_{\Delta MBN}=MQ\cdot AN+MP\cdot BN\)
Ta lại có:
\(2S_{\Delta MAN}+2S_{\Delta MBN}=2\left(S_{\Delta MAN}+S_{\Delta MBN}\right)=2\cdot\frac{AB\times MN}{2}=AB\cdot MN\)
Vậy \(MQ\cdot AN+MP\cdot BN=AB\cdot MN\)
Mà AB không đổi nên tích AB x MN lớn nhất
<=> MN lớn nhất
<=> MN là đường kính
<=> M là điểm chính giữa cung AB