Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xé tứ giác HMBQ có: góc QHP = 90o ( PQ vuông góc với AB tại H )
góc QMB = 90o ( M là hình chiếu của Q trên PB )
=> hai đỉnh H và M nằm kề nhau và cùng nhìn đoạn QB dưới hai gióc bằng nhau ( =90o) => tứ giác HMBQ là tứ giác nội tiếp (đpcm)
ta có tam giác PHM đồng dạng PBQ ( g.g) => \(\frac{HM}{BQ}=\frac{PH}{PB}\Rightarrow\frac{BQ}{PB}=\frac{HM}{PH}=\frac{BQ-HM}{PB-PH}>0\)
mà PB - PH > 0 (do PB > PH)
=> BQ - HM > 0 hay BQ > HM (đpcm)
b, dễ dàng chứng minh được tam giác HKQ đồng dạng với MPQ (g.g)
=> góc MPQ = góc HKQ
mà MPQ = QAH ( hai góc nội tiếp cùng chắn cung QB)
=> góc HKQ = QAH
=> tam giác AQK cân tại Q (đpcm)
Xét tam giác PQB, có:
HB \(\perp\)PQ
QM\(\perp\)PB
Mà QM cắt HB tại K
=> K la trực tâm tam giác PQB
=> PK \(\perp\)QB (t/c trực tâm )
Xét tứ giác PMKH, có
góc PMK = PHK = 90o (QM \(\perp\)PB; BH\(\perp\)PQ)
=> PMK + PHK = 180o
=> tứ giác PMKH nt
=> góc PHM = PKM ( 2 góc nt chắn PB của đtron ngoại tiếp tg PMKH )
Vì tứ giác HMBQ nội tiếp ( cmt)
=> MBQ + QHM = 180o ( t/c tg nt )
ma PHM + MHQ = 180o ( kề bù )
=> MBQ = PHM
mà PHM = PKM ( cmt )
=> MBQ = PKM
Xét tam giác PKM và PBI, có
MBQ = PKM ( cmt )
IPB chung
=> tam giác PKM đồng dạng tam giác PBI (g.g)
=> PIB = PMK = 90o
=> PI \(\perp\)IB
hay PI\(\perp\)QB
mà PK \(\perp\)QB ( cmt )
=> PI \(\equiv\)PK
=> P, I, K thẳng hàng
A B O M N K C H I D P
Gọi KC cắt đường tròn (O) lần thứ hai tại I, BK cắt AC tại D. Kẻ đường kính IP của đường tròn (O).
Ta thấy ^IKP chắn nửa đường tròn (O) nên KP vuông góc KI. Mà KN vuông góc KI nên K,N,P thẳng hàng
Dễ dàng chứng minh \(\Delta\)IMO = \(\Delta\)PNO (c.g.c) => ^OIM = ^OPN => IM // PN hay IM // KN
Do KN vuông góc CK nên MI cũng vuông góc CK => ^MIC = ^MAC = 900 => Tứ giác ACIM nội tiếp
Suy ra ^AMC = ^AIC = ^ABK => MC // BK. Khi đó, \(\Delta\)ADB có M là trung điểm AB, MC // BD (C thuộc AD)
=> C là trung điểm AD. Nếu ta gọi BC cắt KH tại S thì \(\frac{HS}{AC}=\frac{KS}{CD}\left(=\frac{BS}{BC}\right)\)(Hệ quả ĐL Thales)
Vậy thì S là trung điểm của KH. Nói cách khác, BC chia đôi KH (tại S) (đpcm).
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
Mình không vẽ được hình nên bạn thông cảm
c, Từ câu a
Tứ giác AMQK nội tiếp
=> KQI=MAK
Mà MAK=KPI (do PH song song MA)
=> KQI=KPI
=> tứ giác KQPI nội tiếp
=> PKI=IQP=BQP
Mà BQP=PAB( tứ giác AQPB nội tiếp đường tròn tâm O)
=> PKI=PAB
=> \(KI//AB\)
Lại có \(AB\perp AM\)
=> \(KI\perp AM\)(đpcm)
Vậy \(KI\perp AM\)