K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OAQ+góc OBQ=180 độ

=>OAQB nội tiếp

b: Xét (O) có

QA,QB là tiếp tuyến

=>QA=QB

mà OA=OB

nên OQ là trung trực của AB

=>OQ vuông góc AB

c: Xét ΔQBE và ΔQFB có

góc QBE=góc QFB

góc BQE chung

=>ΔQBE đồng dạng với ΔQFB

=>QB^2=QE*QF=QK*QO

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
10 tháng 4 2021

a) Chứng minh tứ giác IEHFIEHF nội tiếp được đường tròn.

Ta có ∠AEB=∠AFB=900∠AEB=∠AFB=900 (góc nội tiếp chắn nửa đường tròn) ;

⇒AE⊥EB,AF⊥EB⇒AE⊥EB,AF⊥EB hay BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900BE⊥AI;AF⊥BI⇒∠IEH=∠IFH=900.

Xét tứ giác IEHFIEHF có: ∠IEH+∠IFH=900+900=1800⇒∠IEH+∠IFH=900+900=1800⇒ Tứ giác IEHFIEHF là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

b) Chứng minh ∠AIH=∠ABE∠AIH=∠ABE.

Cách 1:

Ta có IEHFIEHF là tứ giác nội tiếp (cmt) ⇒∠EIH=∠EFH⇒∠EIH=∠EFH (hai góc nội tiếp cùng chắn cung EHEH)

Hay ∠AIH=∠EFA.∠AIH=∠EFA.

Mà ∠EBA=∠EFA∠EBA=∠EFA (hai góc nội tiếp cùng chắn cung AFAF của (O)(O))

⇒∠AIH=∠ABE(=∠EFH).(dpcm)⇒∠AIH=∠ABE(=∠EFH).(dpcm)

Cách 2:

Xét tam giác IABIAB có hai đường cao AF,BEAF,BE cắt nhau tại H⇒HH⇒H là trực tâm tam giác IABIAB.

⇒IH⊥AB⇒IH⊥AB hay IK⊥ABIK⊥AB tại KK.

Xét tam giác vuông AIKAIK có: ∠AIK+∠IAK=900⇔∠AIH+∠IAB=900∠AIK+∠IAK=900⇔∠AIH+∠IAB=900.

Xét tam giác vuông ABEABE có: ∠ABE+∠EAB=900⇔∠ABE+∠IAB=900∠ABE+∠EAB=900⇔∠ABE+∠IAB=900.

Do đó ∠AIH=∠ABE∠AIH=∠ABE.

c) Chứng minh cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

Nối PA,PBPA,PB ta có ∠APB=900∠APB=900 (góc nội tiếp chắn nửa đường tròn).

Xét tam giác BPKBPK và tam giác BAPBAP có:

∠ABP∠ABP chung;

∠BKP=∠BPA=900;∠BKP=∠BPA=900;

⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB⇒ΔBPK∼ΔBAP(g.g)⇒PKPA=BKPB (hai cặp cạnh tương ứng tỉ lệ).

Áp dụng tính chất dãy tỉ số bằng nhau ta có: PKPA=BKPB=PK+BKPA+PBPKPA=BKPB=PK+BKPA+PB (1).

Xét tam giác vuông BKPBKP ta có: cos∠ABP=cos∠KPB=BKPBcos⁡∠ABP=cos⁡∠KPB=BKPB (2).

Từ (1) và (2) ta có cos∠ABP=PK+BKPA+PBcos⁡∠ABP=PK+BKPA+PB.

d) Gọi SS là giao điểm cuả tia BFBF và tiếp tuyến tại AA của nửa đường tròn (O)(O). Khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK.

Xét tứ giác AEHKAEHK có: ∠AEH+∠AKH=900+900=1800⇒∠AEH+∠AKH=900+900=1800⇒ Tứ giác AEHKAEHK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 18001800).

⇒∠HEK=∠HAK=FAB⇒∠HEK=∠HAK=FAB (hai góc nội tiếp cùng chắn cung HKHK);

Lại có ∠FAB=∠FEB∠FAB=∠FEB (hai góc nội tiếp cùng chắn cung FBFB của (O)(O));

⇒∠HEK=∠FEB⇒EB⇒∠HEK=∠FEB⇒EB là phân giác của ∠FEK∠FEK ⇒∠FEK=2∠FEB=2∠FAB⇒∠FEK=2∠FEB=2∠FAB (3).

Ta có: {IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒{IH⊥AB(cmt);SA⊥AB(gt)⇒IH//SA⇒ Tứ giác AHISAHIS là hình thang (Tứ giác có 2 cạnh đối song song).

Khi AHISAHIS là tứ giác nội tiếp thì ∠SAH+∠SIH=1800∠SAH+∠SIH=1800 (tổng hai góc đối của tứ giác nội tiếp) ;

Mà ∠SAH+∠AHI=1800∠SAH+∠AHI=1800 (hai góc trong cùng phía bù nhau) ;

⇒∠SIH=∠AHI⇒⇒∠SIH=∠AHI⇒ Tứ giác AHISAHISlà hình thang cân.

Do đó ∠ISA=∠SAH∠ISA=∠SAH (Tính chất hình thang cân) hay ∠BSA=∠SAF∠BSA=∠SAF.

Mà ∠SAF=∠SBA∠SAF=∠SBA (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AFAF );

⇒∠BSA=∠SBA⇒ΔSAB⇒∠BSA=∠SBA⇒ΔSAB vuông cân tại A⇒∠SBA=450A⇒∠SBA=450.

⇒ΔFAB⇒ΔFAB vuông cân tại F⇒∠FAB=450F⇒∠FAB=450 (4).

Từ (3) và (4) ta có ∠FEK=2∠FAB=2.450=900∠FEK=2∠FAB=2.450=900.

Vậy khi tứ giác AHISAHIS nội tiếp được đường tròn, chứng minh EFEF vuông góc với EKEK(đpcm).

1 tháng 7 2021

a, ta có : góc AEB = 90 độ

suy ra góc HEI = 90 độ

tương tự ta có góc HFI = 90 độ

suy ra : góc HEI + góc HFI = 180 độ 

suy ra IEHF nội tiếp đường tròn

b, góc AIH = AFE

mà góc ABE = góc AFE

suy ra góc AIH = góc ABE

22 tháng 3 2018

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

19 tháng 5 2022

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

a) Trong tam giác OIK có:

|OK  OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣.

Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông). 
Mà OM = OI + IM = OI + OK;

      ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOI.  Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.

5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em