K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

A B O C D E M H K

a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)

       OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)

Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)

=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện  = 1800)

b) Xét \(\Delta\)EKD và \(\Delta\)EDB

có: \(\widehat{BED}\):chung

 \(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)

 => \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)

=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)

Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD

 OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD

Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)

Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)

Xét tam giác EHK và tam giác EBO

có: \(\widehat{OEB}\): chung

 \(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)

=> tam giác EHK ∽ tam giác EBO (c.g.c)

=> \(\widehat{EHK}=\widehat{KBA}\)

c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)

=> OM.EC = AE.MC

Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)

Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)

mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)

=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME

=> \(\frac{OM}{EM}=1\)

=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

15 tháng 12 2020

trâu chưa đi cày à trâu

22 tháng 2 2021

có sđ AB = sđ BC = sđ CD 

mà BIC = 1/2 ( sđ AD - sđ BC ) =1/2 ( sđ BD - sđ AB -sđ BC )

BKD = 1/2 ( sđ BD - sđ BC-sđ CD )

nên BIC=BKD

b,KBC = CDB ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung CD)

mà CDB = CBD ( BC = CD )

nên KBC = CBD => BC là tia pg của KBD

23 tháng 2 2021

A) 

Vì góc BIC có đỉnh nằm ngoài đường tròn
nên: góc BIC = \(\dfrac{sđAD-sđBC}{2}\) 
Mà: sđAD = \(\dfrac{sđBD+sđAB}{2}\) ; sđBC = sđ AB = sđCD
=> góc BIC = \(\dfrac{sđBD+sđAB-sđAB}{2}\) = \(\dfrac{sđBD}{2}\) (1)
Ta có: góc BKD = \(\dfrac{sđBD}{2}\) (2)
từ (1) và (2) => góc BIC = góc BKD

B)

Vì góc KBC và góc BDC cùng chắn cung BC 
=> góc KBC = góc BDC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
Ta có: sđBC = sđCD (gt)
nên: góc BDC = góc DBC (hai góc nội tiếp chắn hai cung bằng nhau)
Vậy góc KBC = góc DBC (cùng bằng góc BDC)
hay: BC là tia phân giác của góc DBK