Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,AB=OA=OK=R=\dfrac{1}{2}OK\) nên tg OBK vuông tại B nên \(BK\perp OB\)
Do đó BK là tt của B với (O)
\(b,\) Áp dụng PTG cho tg OBK vg tại B
\(KB=\sqrt{OK^2-OB^2}=\sqrt{4R^2-R^2}=\sqrt{3R^2}=R\sqrt{3}\left(đv\right)\)
bạn tự vẽ hình nha
bạn dễ dàng chứng minh đc tam giác ACO là tam giác đều ( AM = MO ; CM vuong goc vs AO )
trong tam giác ECO có EA = AO = AC nên suy ra tam giac ECO vuong tai C
suy ra EC vuong goc vs OC . (dpcm )
b, sử dụng định lí pitago
Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được
R B O C M A E
a) Bán kính OA vuông góc với BC nên MB = MC.
Lại có MO = MA ( gt )
Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.
Lại có: OA \(\perp\) BC nên OBAC là hình thoi.
b) Ta có: OA = OB (bán kính)
OB = BA (tính chất hình thoi).
Nên OA = OB = BA => \(\Delta AOB\)đều => ∠AOB = 60o
Trong tam giác OBE vuông tại B ta có:
BE = OB . tg∠AOB = OB . tg60o = \(R.\sqrt{3}\)
a: Xét ΔBKO có
BA là đường trung tuyến ứng với cạnh OK
\(BA=\dfrac{1}{2}KO\)
Do đó: ΔBKO vuông tại B
hay BK là tiếp tuyến của (O)
b: \(KB=\sqrt{4R^2-R^2}=R\sqrt{3}\)