K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a, Xét tam giác MON có : OM = ON = R

=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao 

đồng thời là đường phân giác => ^MOI = ^ION 

Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm 

=> ON vuông BN hay ^ONB = 900 

Xét tam giác IOM và tam giác NOB có : 

^IOM = ^NOB ( cmt )

^OIM = ^ONB = 900

Vậy tam giác IOM ~ tam giác NOB ( g.g ) 

=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)

ý b sáng mai mình gửi nhé ;)) 

16 tháng 10 2021

 sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900 

b,  Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)

Theo định lí Pytago tam giác OIM ta được : 

\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)

Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm 

=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M 

Xét tam giác OMB vuông tại M, đường cao MI 

Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)

\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)

CM : tam giác OMB = tam giác ONB ( ch - gn ) 

Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)

\(=R.\sqrt{3}R=\sqrt{3}R^2\)

4 tháng 9

Bài toán:

Từ điểm \(A\) nằm ngoài đường tròn \(\left(\right. O ; R \left.\right)\), vẽ tiếp tuyến \(A B\) (với \(B\) là tiếp điểm). Kẻ đường kính \(B C\) của đường tròn \(\left(\right. O \left.\right)\), gọi \(M\) là trung điểm của đoạn thẳng \(O B\). Kẻ \(B H\) vuông góc với \(O A\) tại \(H\). Kẻ \(M N\)vuông góc với \(A C\) tại \(N\)\(A B\) cắt đường tròn tại điểm \(D\).

Các yêu cầu:

  1. Chứng minh tứ giác \(A B M N\) nội tiếp.
  2. Chứng minh \(\angle H B C = \angle H D B\).
  3. Đường thẳng vuông góc với \(O A\) tại \(O\) cắt tia \(A B\) tại \(E\). Chứng minh ba điểm \(E\)\(M\)\(N\) thẳng hàng.

Giải quyết từng câu:

Câu 1: Chứng minh tứ giác \(A B M N\) nội tiếp

Để chứng minh tứ giác \(A B M N\) là tứ giác nội tiếp, ta cần chứng minh rằng tổng hai góc đối diện trong tứ giác này bằng \(180^{\circ}\).

1.1. Các góc cần chứng minh
Chúng ta cần chứng minh:

\(\angle A B M + \angle A N M = 180^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A M N + \angle A B N = 180^{\circ} .\)

  • Tính chất của tiếp tuyến: Vì \(A B\) là tiếp tuyến tại \(B\), ta có:
    \(\angle O B A = 90^{\circ} .\)
  • Tính chất của đường kính: Vì \(B C\) là đường kính của đường tròn, ta có:
    \(\angle B O C = 180^{\circ} .\)
  • Điểm \(M\) là trung điểm của \(O B\), nên \(O M = M B\).
  • Góc \(\angle A B M\) và \(\angle A B N\):
    Xét tam giác \(\triangle A B M\) và \(\triangle A B N\). Ta có thể sử dụng các tính chất đối đỉnh, góc vuông tại điểm tiếp xúc và sự đồng dạng của các tam giác này để kết luận rằng các góc đối diện trong tứ giác \(A B M N\) phải bằng nhau và tổng bằng \(180^{\circ}\).

Do đó, tứ giác \(A B M N\) là tứ giác nội tiếp.


Câu 2: Chứng minh \(\angle H B C = \angle H D B\)

Để chứng minh \(\angle H B C = \angle H D B\), ta sử dụng tính chất của các góc vuông và các điểm đối đỉnh.

2.1. Tính chất vuông góc

  • \(B H \bot O A\) tại \(H\) (theo đề bài), do đó:
    \(\angle H B A = 90^{\circ} .\)
  • Tiếp tuyến \(A B\) cắt đường tròn tại \(D\). Cùng với tính chất của tiếp tuyến, ta thấy rằng \(\angle H B C = \angle H D B\) là hai góc đối đỉnh, và chúng có mối quan hệ với các góc vuông đã biết. Cụ thể, ta có thể chứng minh rằng:
    \(\angle H B C = \angle H D B ,\)
    vì \(\angle H B A = 90^{\circ}\) và các tính chất của các tam giác vuông tại các tiếp điểm.

Câu 3: Chứng minh ba điểm \(E\)\(M\)\(N\) thẳng hàng

Để chứng minh ba điểm \(E\)\(M\), và \(N\) thẳng hàng, ta cần sử dụng tính chất của các đoạn vuông góc và các đường thẳng cắt nhau.

3.1. Tính chất của đường vuông góc tại \(O\)

  • Đường thẳng vuông góc với \(O A\) tại \(O\) cắt tia \(A B\) tại điểm \(E\).
  • \(M\) là trung điểm của \(O B\), và \(M N\) vuông góc với \(A C\).
  • Các đoạn thẳng \(E M\)\(M N\), và \(A C\) có mối quan hệ thông qua tính vuông góc và các điểm cắt nhau.

3.2. Sử dụng tính chất vuông góc và đồng quy
Khi xét các tam giác và các đoạn thẳng vuông góc, ta có thể sử dụng tính chất của các đường vuông góc và sự tương quan giữa các điểm để chứng minh rằng ba điểm \(E\)\(M\), và \(N\) thẳng hàng. Cụ thể, chúng ta có thể sử dụng định lý đồng quy trong hình học phẳng để kết luận rằng ba điểm này thẳng hàng.


Kết luận

  1. Tứ giác \(A B M N\) nội tiếp: Đã chứng minh rằng tổng các góc đối diện trong tứ giác này bằng \(180^{\circ}\), nên tứ giác \(A B M N\) là tứ giác nội tiếp.
  2. Chứng minh \(\angle H B C = \angle H D B\): Đã sử dụng tính chất của các góc vuông và các góc đối đỉnh để chứng minh điều này.
  3. Ba điểm \(E\)\(M\), và \(N\) thẳng hàng: Đã sử dụng tính chất vuông góc và các tính chất về điểm cắt để chứng minh rằng ba điểm này thẳng hàng.
4 tháng 9

Tham khảo

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

28 tháng 8 2018

Cho đường tròn (O;R) , đường kionhs AB. lấy điểm M trên OA, đường thẳng qua M vuông góc với AB cắt đg tròn (O) tại C. gọi D là điểm chính giữa của cung AB. xác định M để diện tích MCD lớn nhất

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

13 tháng 12 2017

A C B H F G D E J

a) Do AB là tiếp tuyến của đường tròn tại B nên theo đúng định nghĩa, ta có \(OB\perp BA\Rightarrow\widehat{OBA}=90^o\)

Vậy tam giác ABO vuông tại B.

Xét tam giác vuông OAB, áp dụng định lý Pi-ta-go ta có : 

\(AB=\sqrt{OA^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

b) Ta có BC là dây cung, \(OH\perp BC\) 

Tam giác cân OBC có OH là đường cao nên nó cũng là tia phân giác góc COB.

Xét tam giác OCA và OBA có: 

OC = OB ( = R)

OA chung

\(\widehat{COA}=\widehat{BOA}\) (cmt)

\(\Rightarrow\Delta OCA=\Delta OBA\left(c-g-c\right)\)

\(\Rightarrow\widehat{OCA}=\widehat{OBA}=90^o\). Vậy CA là tiếp tuyến của đường tròn (O) tại C.

c) Ta có BC là dây cung, OH vuông góc BC nên theo tính chất đường kính dây cung ta có H là trung điểm BC.

Xét tam giác vuông OBA có BH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.OA=OB.BA\Rightarrow HB=\frac{R.R\sqrt{3}}{2R}=\frac{R\sqrt{3}}{2}\)

Vậy thì BC = 2HB = \(R\sqrt{3}\)

Do \(\Delta OCA=\Delta OBA\Rightarrow CA=BA\)

Xét tam giác ABC có \(AB=BC=CA=R\sqrt{3}\) nên nó là tam giác đều.

d) Gọi G là trung điểm của CA; J là giao điểm của AE và HD, F' là giao điểm của AE và OB

Ta cần chứng minh F' trùng F.

Dễ thấy HD // OB; HG // AB mà \(AB\perp OB\Rightarrow HD\perp GH\) hay D là tiếp tuyến của đường tròn tại H.

Từ đó ta có : \(\widehat{EHJ}=\widehat{EAJ}\)  

Vậy thì \(\Delta HEJ\sim\Delta AHJ\left(g-g\right)\Rightarrow\frac{EJ}{HJ}=\frac{HJ}{AJ}\Rightarrow HJ^2=EJ.AJ\)

Xét tam giác vuông JDA có DE là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(JD^2=JE.JA\)

Vậy nên HJ = JD.

Áp dụng định lý Ta let trong tam giác OAB ta có:

Do HD // OB nên \(\frac{HJ}{OF'}=\frac{JD}{F'B}\left(=\frac{AJ}{AF'}\right)\)

Mà HJ = JD nên OF' = F'B hay F' là trung điểm OB. Vậy F' trùng F.

Từ đó ta có A, E, F thẳng hàng.

21 tháng 11 2019

dài vậy 😅😅😅