Δ) không có điểm chung với đường tròn (O)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2022

1: Xét (O) có

MA,MB là các tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM vuông góc với AB

Ta có: ΔOAB cân tại O

mà OK là đường cao

nên K là trug điểm của BA

=>AB=2AK

Xét tứ giác OAMB có góc OAM+góc OBM=180 độ

nên OAMB là tứ giác nội tiếp(1)

Xét tứ giác OAMH có góc OAM+góc OHM=180 độ

nên OAMH là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra O,A,M,B,H cùng thuộc 1 đường tròn

2: Xét ΔOBI và ΔOHB có

góc OBI=góc OHB

góc IOB chung

DO đó: ΔOBI đồng dạng với ΔOHB

=>OB/OH=OI/OB

=>OI*OH=OB^2=R^2

Xét ΔOAM vuông tại A có AK là đường cao

nên OK*OM=OA^2=R^2

30 tháng 12 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [O, M] Đoạn thẳng l: Đoạn thẳng [M, H] Đoạn thẳng m: Đoạn thẳng [H, O] Đoạn thẳng n: Đoạn thẳng [A, M] Đoạn thẳng p: Đoạn thẳng [M, B] Đoạn thẳng q: Đoạn thẳng [A, O] Đoạn thẳng r: Đoạn thẳng [O, B] Đoạn thẳng t: Đoạn thẳng [N, B] Đoạn thẳng b: Đoạn thẳng [E, J_1] Đoạn thẳng e: Đoạn thẳng [N, E] Đoạn thẳng f_1: Đoạn thẳng [E, B] Đoạn thẳng g_1: Đoạn thẳng [A, E] O = (6.36, -0.08) O = (6.36, -0.08) O = (6.36, -0.08) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có tam giác MAB cân tại M có MK là phân giác nên đồng thời là đường trung tuyến. Vậy thì K là trung điểm AB hay \(AK=\frac{AB}{2}\)

Ta thấy các tam giác MHO, MAO, MBO đều là các tam giác vuông chung cạnh huyền MO nên M, H, A, O B cùng thuộc đường tròn đường kính MO.

b) Do K là trung điểm AB nên theo tính chất đường kính dây cung, ta có \(\widehat{IKO}=90^o\)

Suy ra \(\Delta IKO\sim\Delta MHO\left(g-g\right)\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OI.OH=OM.OK\)

Xét tam giác vuông MBO, đường cao BK, ta có: \(OK.OM=OB^2=R^2\)

Vậy nên \(OI.OH=OK.OM=R^2\)

c) Ta thấy do trung điểm của BN cắt OM tại E nên EN = EB

Lại có EB = EA vì OM là đường trung trực của AB

Suy ra EA = EN hay tam giác EAN cân tại E.

Gọi J là trung điểm AN.

Xét tam giác cân EAN có EJ là trung tuyến nên đồng thời là đường cao.

Vậy thì \(EJ\perp OA\) hay EJ // AM.

Xét tam giác OAM, áp dụng định lý Talet ta có:

\(\frac{OE}{OM}=\frac{OF}{OA}=\frac{2}{3}\)

28 tháng 8 2018

Cho đường tròn (O;R) , đường kionhs AB. lấy điểm M trên OA, đường thẳng qua M vuông góc với AB cắt đg tròn (O) tại C. gọi D là điểm chính giữa của cung AB. xác định M để diện tích MCD lớn nhất

26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

7 tháng 11 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l

a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)

Vậy tam giác ABC là tam giác vuông tại C.

b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\) 

Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.

Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.

c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:

\(EC.EA=BE^2\)

Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:

\(BE^2=OE^2-OB^2=OE^2-R^2\)

Vậy ta có ngay \(EC.EA=OE^2-R^2\)

d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:

\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)

Lại có NH = HC nên BF = FE

Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.

Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)

hay CF là tiếp tuyến của đường tròn (I)