Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Dễ thấy tứ giác IBAC là tứ giác nội tiếp. Vậy thì \(\widehat{CIA}=\widehat{CBA};\widehat{BIA}=\widehat{BCA}\)
Mà \(\widehat{CBA}=\widehat{BCA}\Rightarrow\widehat{CIA}=\widehat{BIA}\) hay IA là phân giác góc BIC.
b) Do KD // AB nên \(\widehat{EDK}=\widehat{EAB}\) (Đồng vị)
Mà \(\widehat{EAB}=\widehat{ICB}\) (Góc nội tiếp cùng chắn cung IB)
Nên \(\widehat{IDH}=\widehat{ICH}\Rightarrow\) tứ giác IHDC nội tiếp. Vậy thì \(\widehat{HID}=\widehat{HCD}\) (cùng chắn cung HD)
Mà \(\widehat{HCD}=\widehat{BED}\) (góc nội tiếp cùng chắn cung BD)
nên \(\widehat{HID}=\widehat{BED}\Rightarrow\) IH // EB
Xét tam giác EKD có I là trung điểm ED, IH // EK nên IH là đường trung bình hay H là trung điểm DK.