K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Hình mình ko tiện vẽ nên có thể hơi khó hiểu
a) xét t/g EAB có : P tđ AE, O tđ AB => OP//EB. mà EP vuông góc FB => PO vuông góc FB

xét t/g PFB có PO là đường cao, BA là đường cao, BA giao PO tại O

 => O là trực tâm t/g => FO vuông góc PB. Mà QH vuông góc PB => QH//OF
xét t/g AFO có Q tđ AF, QH//OF => H tđ OA (đpcm)

b) Xét t/g CBD có : BO= 1/2 CD (=R) , BO là trung tuyến => t/g CBD vuông tại B
Xét t/g EBF có: EBF = 90 độ, BA là đường cao => AB^2 = AE.AF
Ta có: AE.AF ≤ (AE+AF)^2/4
=> AB^2 ≤ EF^2/4
=> AB ≤ EF/2 (do AB, EF >0)

=> EF.AB/2 ≥ AB^2

=> diện tích EBF ≥ AB^2
lại có diện tích BPQ = PQ.AB/2= [(1/2.AE+ 1/2.AF).AB]/2= EF.AB/4= diện tích EBF/2

=> diện tích BPQ ≥ AB^2/2

dấu "=" <=> AE= AF => A tđ EF

           xét t/g EBF có BA là trung tuyến, BA là đường cao => t/d EBF cân tại B => BA là phân giác
xét t/g CBD có: BO là trung tuyến, BO là phân giác => t/g CBD cân tại B => BO là đường cao => AB vuông góc CD

Vậy t.g BPQ có dt nhỏ nhất <=> AB vuông góc CD

Oke, nếu thấy đúng thì cho mik xin 1 k nhé!

30 tháng 12 2017

b) Chứng minh AH = \(\dfrac{R}{2}\)

Từ câu a) suy ra: \(\dfrac{AH}{AQ}=\dfrac{AP}{AB}\)

\(\Rightarrow AH=\dfrac{AP.AQ}{AB}=\dfrac{\dfrac{AN}{2}.\dfrac{AM}{2}}{AB}=\dfrac{AN.AM}{4AB}=\dfrac{AB^2}{4AB}\)

( Tam giác BCD vuông tại B vì CD là đường kính
nên BMN vuông tại B, có BA là đường cao nên AM.AN = AB2 ,theo hệ thức lượng trong tam giác vuông) \(=\dfrac{AB}{4}=\dfrac{2R}{4}=\dfrac{R}{2}\)

c) SBPQ = \(\dfrac{AB.PQ}{2}=\dfrac{AB\left(AP+AQ\right)}{2}=\dfrac{AB.\left(\dfrac{AN+AM}{2}\right)}{2}=\dfrac{AB.\left(AN+AM\right)}{4}\)

SBPQ nhỏ nhất \(\Leftrightarrow\dfrac{AB\left(AN+AM\right)}{4}\) nhỏ nhất

Mà AB = 2R không đổi
Nên SBPQ nhỏ nhất \(\Leftrightarrow\) AM + AN nhỏ nhất
Vì AM.AN = AB2 = 4R2 không đổi
Nên AM + AN nhỏ nhất \(\Leftrightarrow\)AM = AN \(\Leftrightarrow\) AB\(\perp\)CD

30 tháng 12 2017

Phần a) và vẽ hình dễ hơn tự làm nha

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
14 tháng 4 2019

a, ta có: ^BAD+^DBA=90 độ

^AFB+^ABF=90 độ

=> ^BAD= ^BFA( đpcm)

b, ta có: ^DAB= góc DCB( gnt cùng chắn cung DB)

=> ^AFD= góc DCB( do câu a)

mà ^DCB+ ^DCE=180 độ ( kề bù)

=> ^AFD+^DCE=180 độ

Xét tứ giác CDFE có: ^ EFD+ ^DCE= 180  độ

=> tứ giác CDFE nội tiếp đường tròn