K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
26 tháng 5 2019

bài này dễ mà

nhưng h tớ bận òi

tối hay khi nào rảnh giải cho

NV
5 tháng 9

Đề lỗi rồi em, ví dụ câu b, 2 BC.MC AC mũ 2 là gì?

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Sửa đề: \(BC\cdot MC=AC^2\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(CB\cdot CM=CA^2\)

c: ΔACM vuông tại C

mà CN là đường trung tuyến

nên NA=NC=NM

Xét ΔNAO và ΔNCO có

NA=NC

NO chung

AO=CO

Do đó: ΔNAO=ΔNCO

=>\(\hat{NAO}=\hat{NCO}\)

=>\(\hat{NCO}=90^0\)

=>NC là tiếp tuyến của (O)

d: Xét (O) có

DC,DB là các tiếp tuyến

Do đó: DC=DB và OD là phân giác của góc BOC

OD là phân giác của góc BOC

=>\(\hat{BOC}=2\cdot\hat{COD}\)

ΔNAO=ΔNCO

=>\(\hat{NOA}=\hat{NOC}\)

=>ON là phân giác của góc COA

=>\(\hat{COA}=2\cdot\hat{CON}\)

Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)

=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)

=>\(2\cdot\hat{NOD}=180^0\)

=>\(\hat{NOD}=90^0\)

e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)

Xét ΔOND vuông tại O có OC là đường cao

nên \(CN\cdot CD=OC^2\)

=>\(NA\cdot BD=OC^2=R^2\)

f: Gọi K là trung điểm của ND

=>K là tâm đường tròn đường kính ND

ΔNOD vuông tại O

mà OK là đường trung tuyến

nên OK=KN=KD

=>K là tâm đường tròn ngoại tiếp ΔNOD

Xét hình thang ABDN có

K,O lần lượt là trung điểm của ND,AB

=>KO là đường trung bình của hình thang ABDN

=>KO//AN//BD

=>KO⊥AB tại O

Xét (K) có

KO là bán kính

AB⊥KO tại O

Do đó: AB là tiếp tuyến của (K)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN

g:

\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)

\(BD\cdot AN=R^2\)

=>\(\frac{BD}{R}=\frac{R}{AN}\)

=>\(\frac{BD}{AO}=\frac{BO}{AN}\)

=>\(\frac{BD}{AO}=\frac{BA}{AM}\)

Xét ΔBAD vuông tại B và ΔAMO vuông tại A có

\(\frac{BA}{AM}=\frac{BD}{AO}\)

Do đó: ΔBAD~ΔAMO

=>\(\hat{BAD}=\hat{AMO}\)

\(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)

nên \(\hat{AMO}+\hat{MAD}=90^0\)

=>OM⊥AD tại I

h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)

nên AICM là tứ giác nội tiếp đường tròn đường kính AM

mà N là trung điểm của AM

nên A,M,C,I cùng thuộc đường tròn (N)