Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có ˆADC=ˆAEC=90oADC^=AEC^=90o (do AD, CE là đường cao của ΔABCΔABC)
⇒D,E⇒D,E cùng nhìn cạnh ACAC dưới một góc là 90o90o
nên AEDCAEDC nội tiếp đường tròn đường kính (AC).
b)
Ta có BFBF ta đường kính (O)
nên ˆBAF=90oBAF^=90o (góc nội tiếp chắn nửa đường tròn (O))
⇒FA⊥AB⇒CH//FA⇒FA⊥AB⇒CH//FA (do cùng vuông góc với AB)
Tương tự ˆBCF=90o⇒AH//CFBCF^=90o⇒AH//CF do cùng ⊥BC⊥BC
⇒AHCF⇒AHCF là hình bình hành hai đường chéo AC,HFAC,HF cắt nhau tại trung điểm mỗi đường mà GG là trung điểm của ACAC nên GG là trung điểm của HF.
A B C O D E S F N M I
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
Mình không vẽ hình được mong bạn thông cảm
a, Vì tứ giác MANB nội tiếp
=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)
Vậy IN.IM=IA^2
b,
VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'
=>PAB=AMP
MÀ AMP=ABN (tứ giác AMBN nội tiếp)
=>PAB=ABN
MÀ I là trung điểm của AB
=> I là trung điểm của NP
=> tứ giác ANBP là hình bình hành
Vậy tứ giác ANBP là hình bình hành
c,Vì tứ giác ANBP là hình bình hành
nên \(AN//BP\)
=>NAB=ABP
Lại có NAB=NMB( tứ giác AMBN nội tiếp)
=>ABP=NMB
=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))
=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và KGH=APB
MÀ I,A,B cố định
=> H,K cố định
Ta có APB=KGH
Mà APB =ANB( tứ giác ANBP là hbh)
=> KGH=ANB
MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =
=> ANB không đổi => KGH không đổi
MÀ K,H cố định
=> G thuộc cung tròn cố định
Vậy khi M di chuyển thì G thuộc cung tròn cố định
A B C O D E K M F T y x
c) Gọi T là giao điểm thứ hai của FD với đường tròn (O). Ta c/m EO đi qua T.
Ta có: ^ADM = ^DAC + ^DCA = ^BAC/2 + ^ACB = ^BAD + ^MAB = ^MAD => \(\Delta\)DAM cân tại M => MA=MD
Lại có: MA và MF là 2 tiếp tuyến của (O) nên MA=MF. Do đó: MD=MF => \(\Delta\)MDF cân tại M (đpcm).
Dễ thấy: \(\Delta\)MAB ~ \(\Delta\)MCA (g.g) và \(\Delta\)MFB ~ \(\Delta\)MCF (g.g)
=> \(\frac{MA}{MC}=\frac{MF}{MC}=\frac{AB}{AC}=\frac{BD}{CD}=\frac{FB}{FC}\) => FD là tia phân giác ^BFC (1)
Kẻ tia đối Fy của FB => ^EFy = ^ECB = ^EBC = ^EFC => FE là phân giác ^CFy (2)
Từ (1) và (2) suy ra: FD vuông góc với FE (Vì ^BFC + ^CFy = 1800) hay ^EFT = 900
=> ET là đường kính của (O) => ET trùng với OE => OE đi qua T => ĐPCM.
d) Áp dụng ĐL Ptolemy có tứ giác BFCT nội tiếp có: BF.CT + CF.BT = BC.FT
=> CT.(BF+CF) = BC.FT => \(BF+CF=\frac{BC.FT}{CT}\le\frac{BC.ET}{CT}=\frac{2CK.ET}{CT}=2EC=2BE\)
Dấu "=" xảy ra khi F trùng với E <=> MF vuông góc OE <=> MF // BC => M không nằm trên BC (mâu thuẫn)
=> Không có dấu "=" => BF+CF < 2BE (đpcm).