Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó: H là trung điểm của BC
Xét tứ giác OBIC có
H là trung điểm của đường chéo BC
H là trung điểm của đường chéo OI
Do đó: OBIC là hình bình hành
mà OB=OC
nên OBIC là hình thoi
Suy ra: BI=OB=R
Xét (O) có
ΔABI nội tiếp đường tròn
AI là đường kính
Do đó: ΔABI vuông tại B
Xét ΔABI vuông tại B có
\(\sin\widehat{BAI}=\dfrac{BI}{AI}=\dfrac{1}{2}\)
nên \(\widehat{BAI}=30^0\)
Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
AH là đường cao ứng với cạnh BC
Do đó: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường phân giác ứng với cạnh BC
Suy ra: \(\widehat{BAC}=60^0\)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)
nên ΔABC đều
a:
góc ABA'=góc ACA'=1/2*180=90 độ
Xét ΔBOA' có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBOA' cân tại B
mà OB=OA'
nên ΔBOA' đều
=>góc A'BH=30 độ
=>góc ABC=60 độ
Xét ΔACB có
AH vừa là đường cao, vừa là trung tuyến
góc ABC=60 độ
=>ΔACb đều
b: ΔOBA' đều có BH là đường cao
nên BH=OA'*căn 3/2=R*căn 3/2
=>CH=R*căn 3/2
=>BC=R*căn 3
=>DC=căn DB^2-BC^2=R
DH=căn DC^2+CH^2=R*căn 7/2
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )