K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

OH là một phần đường kính

BC là dây

OH⊥BC tại H 

Do đó: H là trung điểm của BC

Xét tứ giác OBIC có

H là trung điểm của đường chéo BC

H là trung điểm của đường chéo OI

Do đó: OBIC là hình bình hành

mà OB=OC

nên OBIC là hình thoi

Suy ra: BI=OB=R

Xét (O) có

ΔABI nội tiếp đường tròn

AI là đường kính

Do đó: ΔABI vuông tại B

Xét ΔABI vuông tại B có

\(\sin\widehat{BAI}=\dfrac{BI}{AI}=\dfrac{1}{2}\)

nên \(\widehat{BAI}=30^0\)

Xét ΔABC có 

AH là đường trung tuyến ứng với cạnh BC

AH là đường cao ứng với cạnh BC

Do đó: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường phân giác ứng với cạnh BC

Suy ra: \(\widehat{BAC}=60^0\)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)

nên ΔABC đều

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

a:

góc ABA'=góc ACA'=1/2*180=90 độ

Xét ΔBOA' có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBOA' cân tại B

mà OB=OA'

nên ΔBOA' đều

=>góc A'BH=30 độ

=>góc ABC=60 độ

Xét ΔACB có

AH vừa là đường cao, vừa là trung tuyến

góc ABC=60 độ

=>ΔACb đều

b: ΔOBA' đều có BH là đường cao

nên BH=OA'*căn 3/2=R*căn 3/2

=>CH=R*căn 3/2

=>BC=R*căn 3

=>DC=căn DB^2-BC^2=R

DH=căn DC^2+CH^2=R*căn 7/2

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng...
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE