Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì MA,MB là tiếp tuyến của (O)
→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o
→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM
b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I
→OA2=OI.OM→OA2=OI.OM
C
Vì OF⊥CM=EOF⊥CM=E
→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp
→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn
→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^
→FC→FC là tiếp tuyến của (O)
a: ΔOAB cân tại O
mà OM là đường cao
nên OM là phân giác
Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔOAM=ΔOBM
=>góc OBM=90 độ
=>MB là tiếp tuyến của (O)
b:F ở đâu vậy bạn?
M A C D O B N P Q E
Dễ thấy \(\Delta MCB~\Delta MDC\left(g.g\right)\Rightarrow\frac{MC}{MD}=\frac{BC}{CD}\)( 1 )
\(\Delta MAB~\Delta MDA\left(g.g\right)\Rightarrow\frac{MA}{MD}=\frac{AB}{AD}\)( 2 )
Lại có MA = MC . Từ ( 1 ) và ( 2 ) suy ra \(\frac{BC}{CD}=\frac{AB}{AD}\Rightarrow AD.BC=AB.CD\)
Áp dụng định lí Ploleme với tứ giác ABCD, ta có :
\(AB.CD+AD.BC=AC.BD\)
\(\Rightarrow BC.AD=AC.BD-AB.CD=\frac{1}{2}AC.BD\)
\(\Rightarrow\frac{AC}{AD}=\frac{2BC}{BD}\)( 3 )
\(\Delta NBE~\Delta NDB\left(g.g\right)\Rightarrow\frac{NB}{ND}=\frac{BE}{DB}\); \(\Delta NCE~\Delta NDC\left(g.g\right)\Rightarrow\frac{NC}{ND}=\frac{CE}{CD}\)
lại có : NB = NC \(\Rightarrow\frac{BE}{BD}=\frac{CE}{CD}\Rightarrow BE.CD=CE.BD\)
Áp dụng định lí Ptoleme với tứ giác BECD, ta có :
\(BE.CD+CE.BD=BC.DE\Rightarrow BE.CD=CE.BD=\frac{1}{2}BC.DE\)
\(\Delta PBC~\Delta PDB\left(g.g\right)\Rightarrow\frac{PC}{PB}=\frac{PB}{PD}\Rightarrow PC.PD=PB^2\)
Mà \(\frac{PC}{PB}=\frac{PB}{PD}=\frac{BC}{BD}\)
Mặt khác : \(\frac{PC}{PD}=\frac{PC.PD}{PD^2}=\left(\frac{PB}{PD}\right)^2=\left(\frac{BC}{BD}\right)^2\)( 4 )
suy ra : \(\frac{PC}{PD}=\left(\frac{BC}{BD}\right)^2=\left(\frac{2CE}{DE}\right)^2\)
giả sử AE cắt CD tại Q
\(\Rightarrow\Delta QEC~\Delta QDA\left(g.g\right)\Rightarrow\frac{QC}{QD}=\left(\frac{2CE}{DE}\right)^2\)
\(\Rightarrow\frac{QC}{QD}=\frac{PC}{PD}\Rightarrow P\equiv Q\)
Vậy 3 điểm A,E,P thẳng hàng
v mình quên nối AE cắt CD. hay là nối 3 điểm A,E,P mà thôi, không sao.
a; Xét ΔOBD có OB=OD
nên ΔOBD cân tại O
Suy ra: \(\widehat{DBO}=\widehat{ODB}\)
mà \(\widehat{ODB}=\widehat{ABC}\)
nên \(\widehat{DBO}=\widehat{ABC}\)
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)
O A B M H C D K F I
a/
Xét tg vuông AMO và tg vuông BMO có
MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
OA=OB=R
=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)
Xét tg MAB có
MA=MB (cmt) => tg MAB cân tại M
\(\widehat{AMO}=\widehat{BMO}\) (cmt)
\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMO có
\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)
Xét tg vuông AMC có
\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Ta có
\(AM^2=MO.MH\) (cmt)
\(\Rightarrow MH.MO=MD.MC\)
c/ Xét tg AMK có
\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)
\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)
\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)
Phần còn lại không biết điểm E là điểm nào?