Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ Nối MA; MD; ME ta có
^DME=^DMA+^CMA (1)
^DMA=90 (góc nội tiếp chắn nửa đường tròn (B)) (2)
^CMA=90 (góc nội tiếp chắn nửa đường tròn (C)) (3)
Từ (1) (2) (3) => ^DME=90 độ => D, M, E thẳng hàng
Xét hai tam giác ABC và DBC, ta có:
BA = BD (bán kính của (B; BA))
CA = CD (bán kính của (C; CA))
BC chung
Suy ra: ∆ ABC = ∆ DBC (c.c.c)
Suy ra: CD ⊥ BD tại D
Vậy CD là tiếp tuyến của đường tròn (B; BA)
Ta có: đường tròn (B, BA) và (C, CA)
mà chúng cắt nhau tại D
=> BA = BD ; CA = CD
Xét \(\Delta ABC\) và \(\Delta DBC\) có:
AB = BD (cmt)
AC = CD (cmt)
BC: cạch chúng
\(\Rightarrow\Delta ABC=\Delta DBC\left(c.c.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{D}\)
mà \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{D}=90^o\)
\(\Rightarrow CD\perp\) với bán kính BD tại D
\(\Rightarrow\) CD là tiếp tuyến của đường tròn (B)