K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và OA là phân giác của góc MON

Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)

\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)

mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)

nên \(\widehat{POA}=\widehat{PAO}\)

=>ΔPAO cân tại P

c: Ta có: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại H

Xét ΔOMA vuông tại M có MH là đường cao

nên \(OH\cdot OA=OM^2=R^2\)