Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
Ta có AB=OA=OB=R ⇒ \(\Delta\)OAB đều ⇒ góc AOB=60 độ Mà góc AOB = số đo cungAB ⇒ số đo cung AB =60 độ Lại có góc AMB là góc nội tiếp đường tròn chắn cung AB ⇒ góc AMB= \(\dfrac{1}{2}\) số đo cung AB =30 độ
vẽ OK vuông góc với AB ta có AK=KB= \(\frac{R\sqrt{3}}{2}\)
áp dụng hệ thức lượng trong tam giác vuông KBO ta có :
\(sin\widehat{KOB}=\frac{KB}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{KOB}=60^0\)
Tương tự ta có :\(\widehat{AOK}=60^0\)
gọi sđ cung AnB là số đo cung AB nhỏ .
gọi sđ cung AmB là số đo cung AB lớn .
\(\Rightarrow\widehat{AOB}=120^0\Rightarrow sđAnB=120^0\)
mà \(sđAnB+sđAmB=360^0\)
\(\Rightarrow sđAmB=240^0\)
ta có \(\widehat{AMB}=\frac{sđAmB}{2}=\frac{240^0}{2}=120^0\)
Đáp án là A
Dây cung AB = R ⇒ ΔOAB là tam giác đều ⇒ ∠(AOB) = 60 0
⇒ số đo cung nhỏ AB là 60 0
Ta có OA = OB = BC = OC
Sđ \(\widehat{BN}\)+ Sđ \(\widehat{BM}=Sđ\widehat{AB}=\widehat{AOB}=60^0\)
\(\Rightarrow\widehat{MBN}=\dfrac{360^0-60^0}{2}=150^0\)
+) Có A,B thuộc đường tròn (O;R)
=> OA = OB = R Mà AB = R
=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)
=> góc AOB = 60 độ ( tính chất tam giác đều)
Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ
=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )
+) Có B,C thuộc đường tròn (O;R) => OB=OC=R
Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )
=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )
=> góc BOC = 90 độ
Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ
=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ
+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C
=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ
=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ
k cho mk nha !!!!!!!!!!!
Tính được sđ A B ⏜ nhỏ = A O B ^ = 90 0
Suy ra sđ A B ⏜ lớn = 270 0
Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
Xét (O) có \(\widehat{AMB}\) là góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\dfrac{1}{2}\cdot\widehat{AOB}=\dfrac{1}{2}\cdot60^0=30^0\)