K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

a, HS tự chứng minh

b, OM = R 2

c, MC. MD = M A 2  = MH.MO

=> MC. MD = MH.MO

=> DMHC ~ DMDO (c.g.c)

=>  M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp

Chứng minh được:  M H C ^ = O H D ^

=>  C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)

2 tháng 3

ko thấy ai trả lời, chắc ko ai biết làm bài này

Tr oii câu này ra lâu lắm rồi mà chả có ai trả lời. Chắc bây giờ bn í tầm 17 tuổi r ^_^

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B

7 tháng 10 2017

a, Vì  M B C ^ = M D B ^ = 1 2 s đ C B ⏜  nên chứng minh được ∆MBC:∆MDB (g.g)

b, Vì  M B O ^ + M A O ^ = 180 0  nên tứ giác MAOB nội tiếp

c, Đường tròn đường kính OM là đường tròn ngoại tiếp tứ giác MAOB => r =  M O 2

Gọi H là giao điểm của AB với OM

=> OH ⊥ AB; AH = BH =  R 3 2

Giải tam giác vuông OAM, đường cao AH ta được OM = 2R Þ r = R

d,  Ta có  M I B ^ = s đ D E ⏜ + s đ B C ⏜ 2 và  M A B ^ = s đ A C ⏜ + s đ B C ⏜ 2

Vì AE song song CD =>  s đ D E ⏜ = s đ A C ⏜ =>  M I B ^ = M A B ^

Do tứ giác MAIB nội tiếp hay 5 điểm A, B, O, I, M nằm trên cùng 1 đường tròn kính MO

Từ đó ta có được  M I O ^ = 90 0 => OI ⊥ CD hay I là trung điểm của CD