Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, OH.OA = O B 2 = R 2 không đổi\
b, Chứng minh ∆ABO = ∆ACO
c, Vẽ ON ⊥ BM => B O N ^ = M O N ^
có B O N ^ = M B x ^ ; M O N ^ = H B M ^
=> M B x ^ = H B M ^
=> MB là phân giác của
C
B
x
^
nên M cách đều hai cạnh BA và BC mà AM là phân giác
B
A
C
^
=> đpcm
d, Ta có ∆ODA:∆OHI => OI.OD = OH.OA = R 2
Ta có: 3OI+OD ≥ 2 3 O I . O D = 2R 3
=> (3OI+OD)min = 2R 3 <=> OI = R 3 3
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC nên OH là phân giác của góc BOC
OH*OA=OB^2=R^2
b: Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
Do đo: ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)