Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có: AB là tiếp tuyến của (O)(gt)
nên AB\(\perp\)OB
=> \(\Delta\)OBA vuông tại B(đpcm)
+ Xét \(\Delta\)OAK Có A1=A2 ( 1 ) (t/c 2 tiếp tuyến cắt nhau)
OK // AB => A1 = O1 ( 2 ) (so le trong)
Từ (1, 2) => (đpcm)
b, Xét \(\Delta\)AKO cân tại K (cmt)
IA = IO (=R)
=> KI là đường trung tuyến \(\Delta\)AKO
=> KI cũng là đường cao
=> KI\(\perp\)AO hay KM \(\perp\)IO
Vậy KM là tiếp tuyến của (O) (đpcm)
c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )
Xét \(\Delta\)ABO vuông tại B (cmt)
AD định lí Py ta go ta cs :
AO2 =AB2 + OB2
AB2 = AO2 - OB2
AB2 = 4R2 - R2
AB = \(R\sqrt{3}\)
dễ rùi tự lm tiếp
b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)
tam giác AON = tam giác MON (c.c.c)
=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến
c) có NM Là tiếp tuyến (câu b)
=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)
có O1+O2+O3+O4 = 180đ
=> O2+O3 = 90đ
=> tam giác NOD vuông tại O
Xét tam giác vuông NOD, đường cao OM
=> tam giác OMN đồng dạng với tam giác DMO
=> \(\frac{NM}{OM}=\frac{OM}{MD}\)
=>\(\frac{AN}{OM}=\frac{OM}{DB}\)
=> AN.BD=\(R^2\)
d) có AN.BD=\(R^2\)
=> 2AN . BD = 2 R.R
=>AC.BD = AB . OA
=>\(\frac{AC}{AB}=\frac{OA}{BD}\)
=> tam giác AOC đồng dạng với tam giác BDA
=>góc AOC = góc ADB
Gọi K là giao điểm của AD và OC
=> tam giác AOK đồng dạng ADB (g.g)
=>góc OKA = góc DBA = 90đ
=> \(AD\perp OC\)