Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó; MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có: ΔONC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)NC tại I
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Xét ΔOIM vuông tại I và ΔOHK vuông tại H có
\(\widehat{IOM}\) chung
Do đó: ΔOIM đồng dạng với ΔOHK
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)
=>\(OI\cdot OK=OH\cdot OM=R^2\)
=>\(OI\cdot OK=OC\cdot OC\)
=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
Xét ΔOIC và ΔOCK có
\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)
\(\widehat{IOC}\) chung
Do đó: ΔOIC đồng dạng với ΔOCK
=>\(\widehat{OIC}=\widehat{OCK}\)
=>\(\widehat{OCK}=90^0\)
=>KC là tiếp tuyến của (O)
b: Gọi giao điểm của OM và AB là H
Suy ra: H là trung điểm của AB
Xét ΔOAM vuông tại A có
\(OM^2=OA^2+AM^2\)
\(\Leftrightarrow AM=\dfrac{R\sqrt{3}}{2}\left(cm\right)\)
Xét ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM
nên \(AH\cdot OM=OA\cdot AM\)
\(\Leftrightarrow AH\cdot2\cdot R=\dfrac{R^2\sqrt{3}}{2}\)
\(\Leftrightarrow AH=\dfrac{R^2\sqrt{3}}{2}\cdot\dfrac{1}{2R}=\dfrac{R\sqrt{3}}{4}\)
\(\Leftrightarrow AB=\dfrac{R\sqrt{3}}{2}\)
c: Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
a: Xét ΔAOM vuông tại A có
\(\sin\widehat{AMO}=\dfrac{OA}{OM}\)
\(\Leftrightarrow OM=OA:\dfrac{1}{2}=2\cdot OA=2\cdot R\)