K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó:ΔABC vuông tại C

Xét ΔBAM vuông tại A có AC là đường cao

nên \(MB\cdot MC=MA^2\left(1\right)\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(2\right)\)

Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)

9 tháng 11 2021

c: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó:ΔABC vuông tại C

Xét ΔBAM vuông tại A có AC là đường cao

nên MB⋅MC=MA2(1)MB⋅MC=MA2(1)

Xét ΔOAM vuông tại A có AH là đường cao

nên MH⋅MO=MA2(2)MH⋅MO=MA2(2)

Từ (1) và (2) suy ra MB⋅MC=MH⋅MO

c: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó:ΔABC vuông tại C

Xét ΔOMA vuông tại A có AC là đường cao

nên \(MB\cdot MC=MA^2\left(1\right)\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\left(2\right)\)

Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)

9 tháng 11 2021

c: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó:ΔABC vuông tại C

Xét ΔOMA vuông tại A có AC là đường cao

nên MB⋅MC=MA2(1)MB⋅MC=MA2(1)

Xét ΔOAM vuông tại A có AH là đường cao

nên MH⋅MO=MA2(2)MH⋅MO=MA2(2)

Từ (1) và (2) suy ra MB⋅MC=MH⋅MO

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

hay OM⊥AB

17 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

b: Xét ΔOAM vuông tại A có AH là đường cao

nên \(HO\cdot HM=HA^2\)

=>\(HO\cdot HM=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)

c: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=OD^2\left(3\right)\)

Xét ΔOIM vuông tại I và ΔOHE vuông tại H có

\(\widehat{HOE}\) chung

Do đó: ΔOIM đồng dạng với ΔOHE

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OE}\)

=>\(OI\cdot OE=OH\cdot OM\left(4\right)\)

Từ (3) và (4) suy ra \(OI\cdot OE=OD^2\)

=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

Xét ΔOID và ΔODE có

\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

\(\widehat{DOE}\) chung

DO đó: ΔOID đồng dạng với ΔODE
=>\(\widehat{OID}=\widehat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)