Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔOMA vuông tại A có AC là đường cao
nên \(MB\cdot MC=MA^2\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM⊥AB
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
b: Xét ΔOAM vuông tại A có AH là đường cao
nên \(HO\cdot HM=HA^2\)
=>\(HO\cdot HM=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)
c: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=OD^2\left(3\right)\)
Xét ΔOIM vuông tại I và ΔOHE vuông tại H có
\(\widehat{HOE}\) chung
Do đó: ΔOIM đồng dạng với ΔOHE
=>\(\dfrac{OI}{OH}=\dfrac{OM}{OE}\)
=>\(OI\cdot OE=OH\cdot OM\left(4\right)\)
Từ (3) và (4) suy ra \(OI\cdot OE=OD^2\)
=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
Xét ΔOID và ΔODE có
\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)
\(\widehat{DOE}\) chung
DO đó: ΔOID đồng dạng với ΔODE
=>\(\widehat{OID}=\widehat{ODE}=90^0\)
=>ED là tiếp tuyến của (O)
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔBAM vuông tại A có AC là đường cao
nên \(MB\cdot MC=MA^2\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MB\cdot MC=MH\cdot MO\)
c: Xét (O) có
ΔABC nội tiếp đường tròn
AB là đường kính
Do đó:ΔABC vuông tại C
Xét ΔBAM vuông tại A có AC là đường cao
nên MB⋅MC=MA2(1)MB⋅MC=MA2(1)
Xét ΔOAM vuông tại A có AH là đường cao
nên MH⋅MO=MA2(2)MH⋅MO=MA2(2)
Từ (1) và (2) suy ra MB⋅MC=MH⋅MO