Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét tứ giác OBCD có
\(\widehat{OBC}+\widehat{ODC}=180^0\)
Do đó: OBCD là tứ giác nội tiếp
hay O,B,C,D cùng thuộc một đường tròn
a: Xét (O) có
CD,CB là các tiếp tuyến
Do đó: CD=CB
=>C nằm trên đường trung trực của DB(1)
Ta có: OD=OB
=>O nằm trên đường trung trực của DB(2)
Từ (1) và (2) suy ra OC là đường trung trực của BD
=>OC\(\perp\)BD
b: Xét tứ giác OBCD có
\(\widehat{OBC}+\widehat{ODC}=90^0+90^0=180^0\)
=>OBCD là tứ giác nội tiếp
=>O,B,C,D cùng thuộc một đường tròn
c: Xét (O) có
\(\widehat{CDM}\) là góc tạo bởi tiếp tuyến DC và dây cung DM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
Do đó: \(\widehat{CDM}=\widehat{DAM}\)
=>\(\widehat{CDM}=\widehat{CAD}\)
Xét ΔCDM và ΔCAD có
\(\widehat{CDM}=\widehat{CAD}\)
\(\widehat{DCM}\) chung
Do đó: ΔCDM đồng dạng với ΔCAD
=>\(\widehat{CMD}=\widehat{CDA}\)
Bạn tụ vẽ hình nha
a, Theo tính chất 2 tiếp tuyến cắt nhau, ta có: CB = CD
mà OB = OD = R
⇒ BD là đường trung trực của OC
⇒ OC ⊥ BD (đpcm)
b, Gọi I là trung điểm của OC thì:
ΔOBC vuông tại B có BI là trung tuyến ứng với cạnh huyền
⇒ BI = IO = IC
ΔODC vuông tại D có DI là trung tuyến ứng với cạnh huyền
⇒ DI = IO = IC
⇒BI = DI = IO = IC
⇒ 4 điểm O,B,C,D cùng thuộc một đường tròn
c,\(\widehat{DMC}\) là góc ngoài tại M của Δ DAM
\(\Rightarrow\widehat{DMC}=\widehat{ADM}+\widehat{DAM}\)
Mà \(\widehat{DAM}=\widehat{MDC}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau)
\(\Rightarrow\widehat{ADM}+\widehat{DAM}=\widehat{ADM}+\widehat{MDC}\)
\(\Rightarrow\widehat{DMC}=\widehat{CDA}\)
a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính O C 2
b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM
c, S A C D B = A C + B D A B 2 = A D . A B 2
=> S A C D B nhỏ nhất khi CD có độ dài nhỏ nhất
Hay M nằm chính giữa cung AB
d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD
ta chứng minh được C N N B = C M M D => MN//BD => MN ⊥ AB