Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
a: Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MEOB có
góc EMB+góc EOB=180 độ
=>MEOB là tứ giác nội tiếp
b: Vì M là điểm chính giữa của cung BC
nên gó MOB=góc MOC=45 độ
góc MEB=góc MOB
góc MBE=góc MOE
mà góc MOE=góc MOB
nên góc MEB=góc MBE
=>ME=MB
=>ΔMEB cân tại M
a) AC \(\perp\) DE tại M
=> MD = ME
Tứ giác ADBE có:
MD =ME, MA = MB (gt)
AB \(\perp\) DE
=> Tứ giác DAEB là hình thoi
b) Ta có: góc BIC = 90o (góc nội tiếp chắn nửa đường tròn (O'))
góc ADC = 90o (góc nội tiếp chắn nửa đường tròn (O))
=> BI \(\perp\) CD , AD \(\perp\) DC, nên AI // BI
mà BE //AD => E,B,I thẳng hàng
Tam giác DIE có MI là đường trung tuyến với cạnh huyền => MI = MD
Do MI =MD(cmt)
=> tam giác MDI cân tại M
=> góc MID = góc MDI
O'I = O'C=R'
=> tam giác O'IC cân tại O'
=> Góc O'IC = góc O'CI
Suy ra: \(\widehat{MID}+\widehat{O'IC}=\widehat{MDI}+\widehat{O'CI}=90^o\) (tam giác MCD vuông tại M)
Vậy MI vuông góc O'I tại , O'I =R' bán kính đường tròn(O')
=> MI là tiếp tuyến đường tròn (O')
c) \(\widehat{BIC}=\widehat{BIM}\) (góc nội tiếp, góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BI)
\(\widehat{BCI}=\widehat{BIH}\) (cùng phụ góc HIC)
=> \(\widehat{BIM}=\widehat{BIH}\)
=> IB là phân giác \(\widehat{MIH}\) trong tam giác MIH
ta lại có BI vuông góc CI
=> IC là phân giác ngoài tại đỉnh I của tam giác MIH
Áp dụng tính chất phân giác đối với tam giác MIH
\(\dfrac{BH}{MB}=\dfrac{IH}{MI}=\dfrac{CH}{CM}\) => \(CH.BM=BH.MC\) (đpcm)
a:góc ANB=1/2*180=90 độ
góc MOB+góc MNB=180 độ
=>MNBO nội tiếp