Cho đường tròn (O:R) đường...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)

\(\Rightarrow AC+BD=AM+BM=AB\)

b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)

\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)

\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)

\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)

c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)

Mà \(CD=2R;AM=AC;BM=BD\)

Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Ta có: CD=CM+MD

nên CD=CA+DB

b: Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{180^0}{2}=90^0\)

24 tháng 9 2021

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

NM
24 tháng 9 2021

mình viết tay nhéundefined

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

b, HE = 4 3

15 tháng 7 2018

6y65y6y6

15 tháng 7 2018

Gjghgh

15 tháng 10 2020

MONG CÁC BẠN GIÚP MÌNH GIẢI CÂU NÀY!!