K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Đây nhé

a, Ta có Xét tam giác ABC có:

OC là trung tuyến của tam giác ABC

OC=OA=OB

Suy ra tam giác ABC vuông tại C

Vậy AC vuông góc với MB

b,Xét tam giác AMB vuông tại A có AC là đường cao

suy ta BC.BM=AB^2=4R^2(hệ thức lượng tam giác vuông )

c,Ta có:

TAm giác ADO cân tại O có OH là đường cao

suy ra H:trung điểm AD

suy ra tam giác AMD cân tại M

suy ra AM=MD

Tam giác AMB vuông tại A có đường cao AC

suy ra AM^2=MC.MB(hệ thức luợng tam giác vuông)

Suy ra MD^2=MC.MB

Nhận xét: Câu c là phương tích trong đường tròn

20 tháng 12 2017

bạn học hệ thức lượng trong đường tròn chưa

19 tháng 12 2020

a) Xét (O) có 

ΔACB nội tiếp đường tròn(A,C,B∈(O))

AB là đường kính của (O)

Do đó: ΔACB vuông tại C(Định lí)

⇒AC⊥CB

hay AC⊥MB(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh huyền MB(cmt), ta được:

\(BC\cdot BM=AB^2\)

\(\Leftrightarrow BC\cdot BM=\left(2\cdot R\right)^2=4R^2\)(đpcm)

c) Xét ΔOAD có OA=OD(=R)

nên ΔOAD cân tại O(Định nghĩa tam giác cân)

mà OM là đường cao ứng với cạnh đáy AD(gt)

nên OM là đường phân giác ứng với cạnh AD(Định lí tam giác cân)

\(\widehat{AOM}=\widehat{DOM}\)

Xét ΔAOM và ΔDOM có 

OA=OD(=R)

\(\widehat{AOM}=\widehat{DOM}\)(cmt)

OM chung

Do đó: ΔAOM=ΔDOM(c-g-c)

⇒MA=MD(hai cạnh tương ứng)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh MB, ta được: 

\(AM^2=MC\cdot MB\)(2)

Từ (1) và (2) suy ra \(MD^2=MC\cdot MB\)(đpcm)

20 tháng 12 2023

loading... loading... 

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

b: Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

c: Xét (O) có

CA,CP là các tiếp tuyến

Do đó: CA=CP và OC là phân giác của góc AOP

Xét (O) có

DB,DP là các tiếp tuyến

Do đó; DB=DP và OD là phân giác của góc BOP

ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

Chu vi tam giác MCD là:

\(C_{MCD}=MC+CD+MD\)

\(=MC+CP+MD+DP\)

\(=MC+CA+MD+DB\)

=MA+MB=2MA=\(=R\sqrt{3}\cdot2=2R\sqrt{3}\)

d: Ta có: OC là phân giác của góc AOP

=>\(\widehat{AOP}=2\cdot\widehat{COP}\)

Ta có: OD là phân giác của góc BOP

=>\(\widehat{BOP}=2\cdot\widehat{DOP}\)

Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}=120^0\)

Ta có: \(\widehat{AOP}+\widehat{BOP}=\widehat{AOB}\)

=>\(2\cdot\left(\widehat{COP}+\widehat{DOP}\right)=120^0\)

=>\(2\cdot\widehat{COD}=60^0\cdot2\)

=>\(\widehat{COD}=60^0\)

12 tháng 1

Thank youuu :3

a: ΔOAC cân tại O có OM là đườg cao

nên OM là phân giác của góc AOC

Xét ΔOAM và ΔOCM có

OA=OC

góc AOM=góc COM

OM chung

=>ΔOAM=ΔOCM

=>góc OCM=90 độ

=>MC là tiếp tuyến của (O)

b: Xét ΔAND vuông tại N và ΔANB vuông tại N có

AN chung

góc NAB=góc NAD

=>ΔAND=ΔANB

=>DN=BN

=>N là trung điểm của BD

c: CN//AB

AB vuông góc CH

=>CN vuông góc CH

=>CN là tiếp tuyến của (O)