Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
OH là một phần đường kính
BC là dây
OH⊥BC tại H
Do đó: H là trung điểm của BC
Xét tứ giác OBIC có
H là trung điểm của đường chéo BC
H là trung điểm của đường chéo OI
Do đó: OBIC là hình bình hành
mà OB=OC
nên OBIC là hình thoi
Suy ra: BI=OB=R
Xét (O) có
ΔABI nội tiếp đường tròn
AI là đường kính
Do đó: ΔABI vuông tại B
Xét ΔABI vuông tại B có
\(\sin\widehat{BAI}=\dfrac{BI}{AI}=\dfrac{1}{2}\)
nên \(\widehat{BAI}=30^0\)
Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
AH là đường cao ứng với cạnh BC
Do đó: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường phân giác ứng với cạnh BC
Suy ra: \(\widehat{BAC}=60^0\)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)
nên ΔABC đều
a: Xét ΔCAO có
CM là đường trung tuyến ứng với cạnh AO
CM là đường cao ứng với cạnh AO
Do đó: ΔCAO cân tại C
mà OA=OC
nên ΔCAO đều
a) Ta có: AB//DE(gt)
CD⊥AB(gt)
Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)
⇔\(\widehat{CDE}=90^0\)
Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)
nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)
⇔D nằm trên đường tròn đường kính CE
⇔C,D,E nằm trên đường tròn đường kính CE
mà C,D,E cùng nằm trên (O)(gt)
nên CE là đường kính của (O)
hay C,O,E thẳng hàng(đpcm)
c)taxét tam giác aen và tam giác KBH có E=H =90 góc EBA chung => hai tam giác đồng dạng => EB.KB=BH.AB mà BH.AB=BC^2 => EB.KB=BC^2 mặt khác tan có BH.HA=CH^2 vậy biểu thức sẽ là BC^2-CH^2=HB^2
d)ta có vì tứ giác AEKH NỘI TIẾP đường tròn đường kính EK => tam giácEKH nội tiếp đưowngf tròn bán kính AK vậy để r lớp nhất => AK lớ nhất, vì tam giác AKH là tam giác vuông => góc AKH<90 vậy AKH là góc tù => AK<AC vậy AK lớn nhất khi bằng AK => E trùng với C thì AK bằng AC => để đường tròn ngoại tiếp tam giác EKH có bán kính lớn nhất thì E trùng với C