K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc CFG=1/2(sđ cung CB+sđ cung AE)

=1/2(sđ cung AC+sđ cung AE)

=1/2*sđ cung CE

=góc CHE

=>góc CFG=góc CHE

=>180 độ-góc EFG=góc CHE

=>góc EFG+góc EHG=180 độ

=>EFGH nội tiếp

4 tháng 8 2023

A B C D O E F G H x y I

1/

Ta có

sđ cung AC = sđ cung BC (1)

\(sđ\widehat{CFG}=\dfrac{1}{2}\left(sđcungBC+sđcungAE\right)\) (góc có đỉnh ở trong hình tròn) (2)

\(sđ\widehat{CHE}=\dfrac{1}{2}sđcungCAE=\dfrac{1}{2}\left(sđcungAC+sđcungAE\right)\) (góc nội tiếp) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{CFG}=\widehat{CHE}\)

Ta có

\(\widehat{CFG}+\widehat{EFG}=\widehat{EFC}=180^o\)

\(\Rightarrow\widehat{CHE}+\widehat{EFG}=180^o\)

=> EFGH là tứ giác nội tiếp (Tứ giác có hai góc đối bù nhau là tứ giác nội tiếp)

2/

sđ cung AC = sđ cung BC (4)

\(sđ\widehat{AGC}=\dfrac{1}{2}\left(sđcungAC+sđcungBH\right)\) (5) (góc có đỉnh ở trong hình tròn)

\(sđ\widehat{CHy}=\dfrac{1}{2}sđcungCBH=\dfrac{1}{2}\left(sđcungBC+sđcungBH\right)\) (6) (Góc giữa tiếp tuyến và dây cung)

Từ (4) (5) (6) \(\Rightarrow\widehat{AGC}=\widehat{CHy}\)

Mà AC = AG (gt) => tgACG cân tại A \(\Rightarrow\widehat{AGC}=\widehat{ACG}\)

\(\Rightarrow\widehat{ACG}=\widehat{CHy}\) mà 2 góc trên ở vị trí so le trong => xy//AC

 

 

 

 

 

 

 

 

a: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

b: MP//OC(cùng vuông góc AB)

=>góc MCO=góc NMP

góc NMP=góc MNO

=>góc MNO=góc MCO

=>góc MNO=góc ODN

=>CM//OP

Xét tứ giác CMPO có

CM//PO

CO//PM

=>CMPO là hình bình hành

c: Xét ΔCOM vuông tại O và ΔCND vuông tại N có

góc OCM chung

=>ΔCOM đồng dạng với ΔCND

=>CO/CN=CM/CD

=>CN*CM=CO*CD=2R^2 ko phụ thuộc vào vị trí của M

2 tháng 6 2017

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).

Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn  đường kính OP => Tứ giác OMNP nội tiếp.

2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)

 Tam giác  ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN

=>  ÐOPM = ÐOCM.

Xét hai tam giác  OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)

Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).

Từ (1) và (2) => Tứ giác CMPO là hình bình hành.

3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC

=>  => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.

.

28 tháng 4 2020

A C B O M N P D

Vì NP là tiếp tuyến của (O)

\(\Rightarrow PM\perp ON\Rightarrow\widehat{ONP}=90^0\)

Mà \(\widehat{OMP}=90^0\Rightarrow\widehat{OMP}=\widehat{ONP}\)

\(\Rightarrow\) ◊OMNP nội tiếp(1)

\(\Rightarrow O,M,N,P\) cùng thuộc một đường tròn

Do CD là đường kính của (O) \(\Rightarrow DN\perp CN\Rightarrow\widehat{COM}=\widehat{CND}=90^0\)

\(\Rightarrow\text{◊ }\)OMND nội tiếp 

\(\Rightarrow O,M,N,D\)cùng thuộc một đường tròn (2)

\(\Rightarrow\widehat{MPD}=180^0-\widehat{DOM}=180^0-90^0=90^0\)

\(\Rightarrow MP\perp DP\Rightarrow OD//MP\)

\(\Rightarrow OMPD\) là hình bình hành 

\(\Rightarrow OD=MP\Rightarrow MP=R\)

\(\Rightarrow MP=OC\)Vì MP//OC \(\left(\perp AB\right)\) \(\Rightarrow CMPO\) là hình bình hành  

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên OH là phân giác của góc COD

=>OM là phân giác của góc COD

=>\(\widehat{COM}=\widehat{DOM}\)

Xét ΔOCM và ΔODM có

OC=OD

\(\widehat{COM}=\widehat{DOM}\)

OM chung

Do đó: ΔOCM=ΔODM

=>\(\widehat{OCM}=\widehat{ODM}\)

mà \(\widehat{ODM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)