Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:
A O 2 = A B 2 + B O 2
Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2 = 16
AB = 4 (cm)
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB = 2.4 = 8 (cm)
a) ta có : AB = AC (tính chất tiếp tuyến)
\(\Rightarrow\) tam giác ABC cân tại A
có OA là tia phân giác của góc A
\(\Rightarrow\) OA \(\perp\) BC \(\Rightarrow\) tam giác ABO vuông tại B có đường cao BH
ta có : OB2 = OA.OH \(\Leftrightarrow\) 32 = 5OH
\(\Rightarrow\) OH = \(\dfrac{9}{5}\) = 1,8 (cm)
nhờ mọi người giúp em với , mai em thi mà em không biết làm bài nik ak. xin chân thành cảm ơn trước ak.
1: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:
\(BO^2=OH\cdot OA\)
\(\Leftrightarrow OH=\dfrac{3^2}{6}=1.5\left(cm\right)\)
Theo tính chất của hai tiếp tuyến cắt nhau ta có :
DB = DM
EM = EC
Chu vi của tam giác ADE bằng :
AD + DE + EA = AD + DM + ME + EA
= AD + DB + AE + EC = AB + AC = 2AB
Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:
AB = OB = 2 (cm)
Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:
\(OH\cdot OA=OB^2\)
\(\Leftrightarrow OH\cdot5=3^2=9\)
hay OH=1,8(cm)
a) tứ giác ABOC là hình vuông
vì BAC = 90 (giả thiết)
ABO = 90 (AB là tiếp tuyến)
ACO = 90 (AC là tiếp tuyến)
AB = AC (tính chất 2 tiếp tuyến cắt nhau)
a: Xét (O) có
AB,AC là tiếp tuyến
Do đó; AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại trung điểm của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2\)
=>\(OH\cdot10=6^2=36\)
=>OH=36/10=3,6(cm)
b:
ΔOBA vuông tại B
=>\(OB^2+BA^2=OA^2\)
=>\(BA^2=10^2-6^2=64\)
=>\(BA=\sqrt{64}=8\left(cm\right)\)
Xét (O) có
DB,DM là tiếp tuyến
Do đó: DB=DM và OD là phân giác của \(\widehat{MOB}\)
Xét (O) có
EM,EC là tiếp tuyến
Do đó: EM=EC và OE là phân giác của \(\widehat{MOC}\)
Chu vi tam giác AED là:
\(C_{AED}=AD+DE+AE\)
\(=AB-BD+DM+ME+AC-CE\)
=AB+AC
=2*AB
=16(cm)
c:
OD là phân giác của góc MOB
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
OE là phân giác của góc MOC
=>\(\widehat{MOE}=\dfrac{1}{2}\cdot\widehat{MOC}\)
Xét ΔBOA vuông tại B có \(sinBOA=\dfrac{BA}{OA}=\dfrac{4}{5}\)
nên \(\widehat{BOA}\simeq53^0\)
\(\widehat{DOE}=\widehat{DOM}+\widehat{MOE}\)
\(=\dfrac{1}{2}\cdot\widehat{BOM}+\dfrac{1}{2}\cdot\widehat{COM}\)
\(=\dfrac{1}{2}\cdot\widehat{BOC}=\widehat{BOA}\)
\(=53^0\)