K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABE vuông tại B có BC là đường cao ứng với cạnh huyền AE, ta được:

\(BC^2=AC\cdot CE\)

8 tháng 10 2020

mong các bạn giúp mk giải bài này

8 tháng 10 2020

= 324 NHÉ BẠN

28 tháng 11 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó; ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>BC\(\perp\)AE tại C

Xét ΔBAE vuông tại B có BC làđường cao

nên \(BC^2=AC\cdot CE\)

b: Xét ΔABC vuông tại C có

\(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{10}=sin30=\dfrac{1}{2}\)

=>CB=5(cm)

Xét ΔEBA vuông tại B có BC là đường cao

nên \(\dfrac{1}{CB^2}=\dfrac{1}{BA^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BE^2}+\dfrac{1}{10^2}=\dfrac{1}{5^2}\)

=>\(\dfrac{1}{BE^2}=\dfrac{1}{25}-\dfrac{1}{100}=\dfrac{3}{100}\)

=>\(BE^2=\dfrac{100}{3}\)

=>\(BE=\dfrac{10}{\sqrt{3}}\left(cm\right)\)

15 tháng 11 2016

giúp mình bài này vs