Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(I\) là trung điểm \(AB,O\) là trung điểm \(BM\)
\(\rightarrow IO\) là đường trung bình \(\Delta ABM\rightarrow OI\text{/ / }AM\rightarrow OI\text{/ / }KM\)
Vì \(BM\) là đường kính của \(O\)\(\rightarrow BK\text{⊥}KM\rightarrow OI\text{⊥}BK\)
\(\rightarrow B,K\) đối xứng qua \(OI\)
\(\rightarrow\widehat{IKO=\widehat{IBO}=90^o}\)
\(\rightarrow IK\) là tiếp tuyền của \(O\)
Biết mỗi làm câu A
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OA là đường trung trực của MN
=>OA\(\perp\)MN tại I
Xét ΔOHA vuông tại H và ΔOIC vuông tại I có
\(\widehat{HOA}\) chung
Do đó: ΔOHA~ΔOIC
=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)
=>\(OH\cdot OC=OA\cdot OI\)
mà \(OA\cdot OI=OM^2=OB^2\)
nên \(OB^2=OH\cdot OC\)
=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
Xét ΔOBC và ΔOHB có
\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)
\(\widehat{BOC}\) chung
Do đó: ΔOBC~ΔOHB
=>\(\widehat{OBC}=\widehat{OHB}\)
mà \(\widehat{OHB}=90^0\)
nên \(\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
mà OA⋅OI=OM2=OB2
nên OB2=OH⋅OC
đoạn này không hiểu ạ , góc B đã vuông đâu
1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp
suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn
2) vì OI \(\perp\)AC nên OI là đường trung trực của AC
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
Xét \(\Delta AOM\)và \(\Delta COM\)có :
\(\widehat{AOM}=\widehat{COM}\)( cmt )
OM ( chung )
OA = OC
\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)
\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O
3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)
Xét \(\Delta AOM\)và \(\Delta HCB\)có :
\(\widehat{AOM}=\widehat{HBC}\); \(\widehat{MAO}=\widehat{CHB}=90^o\)
\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)
4) Gọi N là giao điểm của BC và AM
Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN
CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)
Mà AM = NM nên CK = KH
\(\Rightarrow\)K là trung điểm của CH
a/
Xét tg vuông AMO và tg vuông BMO có
MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)
OA=OB=R
=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)
Xét tg MAB có
MA=MB (cmt) => tg MAB cân tại M
\(\widehat{AMO}=\widehat{BMO}\) (cmt)
\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
Xét tg vuông AMO có
\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
b/
Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)
Xét tg vuông AMC có
\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Ta có
\(AM^2=MO.MH\) (cmt)
\(\Rightarrow MH.MO=MD.MC\)
c/ Xét tg AMK có
\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)
\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)
\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)
Phần còn lại không biết điểm E là điểm nào?
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK