Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) đồng thời \(AH=\dfrac{AB}{2}=\dfrac{1}{2}\)
\(OH=\sqrt{R^2-AH^2}=\sqrt{1-\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}\) (cm)
a) Vẽ OH⊥ABOH⊥AB, ta có HA=HB=4cm.
Xét tam giác HOB vuông tại H, có:
OH2=OB2−HB2=52−42=9⇒OH=3(cm)OH2=OB2−HB2=52−42=9⇒OH=3(cm).
b) Vẽ OK⊥CDOK⊥CD. TỨ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI. Ta có HI=4-1=3cm, suy ra OK=3cm.
Vậy OH=OK=3cm.
Hai dây AB và CD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
a) Vẽ OH ⊥ AB, ta có HA=HB=4cm.
Xét tam giác HOB vuông tại H, có:
OH2 = OB2 – HB2 =52 – 42 = 9
⇒ OH = 3(cm).
b) Vẽ OK ⊥ CD. Tứ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI.
Ta có HI=4-1=3cm, suy ra OK=3cm.
Vậy OH=OK=3cm. Hai dây AB và CD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
D M A J C O J B
a) Kẻ OJ vuông góc với AB tại J.
Theo quan hệ vuông góc giữa đường kính và dây suy ra : J là trung điểm của AB
Ta được : \(AJ=\frac{1}{2}AB=4cm\)
Áp dụng định lí Pitago trong tam giác vuông OAJ có:
OJ2 = OA2 – AJ2 = 52 – 42 = 9 ( OA = R = 5cm )
=> OJ = 3cm (1)
Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.
b) Kẻ OM vuông góc với CD tại M.
Tứ giác OJIM có :\(\widehat{I}=\widehat{J}=\widehat{M}=90^o\)nên là hcn
Ta có IJ = AJ – AI = 4 – 1 = 3cm
=> OM = IJ = 3cm (Tính chất hình chữ nhật) (2)
Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)
a) Kẻ OJ vuông góc với AB tại J.
Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.
Áp dụng định lí Pitago trong tam giác vuông OAJ có:
OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)
=> OJ = 3cm (1)
Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.
b) Kẻ OM vuông góc với CD tại M.
Tứ giác OJIM có: nên là hình chữ nhật
Ta có IJ = AJ – AI = 4 – 1 = 3cm
=> OM = IJ = 3cm (Tính chất hình chữ nhật) (2)
Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)
Lời giải chi tiết
a) Kẻ OH⊥ABOH⊥AB tại H
Khi đó, đường tròn (O) có OH là 1 phần đường kính vuông góc với dây AB tại H
Suy ra HH là trung điểm của dây ABAB (Theo định lí 2 - trang 103)
⇒HA=HB=AB2=82=4cm.⇒HA=HB=AB2=82=4cm.
Xét tam giác HOBHOB vuông tại HH, theo định lí Pytago, ta có:
OB2=OH2+HB2⇔OH2=OB2−HB2OB2=OH2+HB2⇔OH2=OB2−HB2
⇔OH2=52−42=25−16=9⇒OH=3(cm)⇔OH2=52−42=25−16=9⇒OH=3(cm).
Vậy khoảng cách từ tâm OO đến dây ABAB là 3cm3cm.
b) Vẽ OK⊥CDOK⊥CD tại K
Tứ giác KOHIKOHI có ba góc vuông (ˆK=ˆH=ˆI=900)(K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HIOK=HI.
Ta có HI=AH−AI=4−1=3cmHI=AH−AI=4−1=3cm, suy ra OK=3cm.OK=3cm.
Vậy OH=OK=3cm.OH=OK=3cm.
Hai dây ABAB và CDCD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
Lời giải chi tiết
a) Kẻ OH⊥ABOH⊥AB tại H
Khi đó, đường tròn (O) có OH là 1 phần đường kính vuông góc với dây AB tại H
Suy ra HH là trung điểm của dây ABAB (Theo định lí 2 - trang 103)
⇒HA=HB=AB2=82=4cm.⇒HA=HB=AB2=82=4cm.
Xét tam giác HOBHOB vuông tại HH, theo định lí Pytago, ta có:
OB2=OH2+HB2⇔OH2=OB2−HB2OB2=OH2+HB2⇔OH2=OB2−HB2
⇔OH2=52−42=25−16=9⇒OH=3(cm)⇔OH2=52−42=25−16=9⇒OH=3(cm).
Vậy khoảng cách từ tâm OO đến dây ABAB là 3cm3cm.
b) Vẽ OK⊥CDOK⊥CD tại K
Tứ giác KOHIKOHI có ba góc vuông (ˆK=ˆH=ˆI=900)(K^=H^=I^=900) nên là hình chữ nhật, suy ra OK=HIOK=HI.
Ta có HI=AH−AI=4−1=3cmHI=AH−AI=4−1=3cm, suy ra OK=3cm.OK=3cm.
Vậy OH=OK=3cm.OH=OK=3cm.
Hai dây ABAB và CDCD cách đều tâm nên chúng bằng nhau.
Do đó AB=CD.
* Mạng :))) *
#Ninh Nguyễn
Lời giải:
Gọi dây trên là dây AB. Hạ OH⊥⊥AB = {H} (cd)
Xét (O) 1 phần đường kính OH: OH⊥⊥AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)
OH⊥⊥AB = {H} (cd) => ΔΔOHB vuông tại H (đn)
=> OH22+ HB22= OB22(Đl Py-ta-go)
T/s: OH22+ 622= R22
<=> OH22+36 = 1022=100
<=> OH22= 64 => OH = 8 (cm)
Gọi H là chân đường cao kẻ từ O
=> H là trung điểm AB
=> AH = AB/2 = 12/2 = 6 cm
Theo định lí Pytago cho tam giác AOH vuông tại H
\(AO^2=OH^2+AH^2\Rightarrow OH^2=AO^2-AH^2=100-36=64\Rightarrow OH=8\)cm
Gọi M là trung điểm AB, theo tc đường kính cắt dây cung thì OM⊥AB tại M
\(\Rightarrow AM=\dfrac{1}{2}AB=0,5\left(cm\right)\)
Áp dụng PTG: \(OM=\sqrt{OA^2-AM^2}=\sqrt{1-0,25}=\dfrac{\sqrt{3}}{2}\left(cm\right)\)
Vậy k/c từ O đến AB là \(\dfrac{\sqrt{3}}{2}\left(cm\right)\)