K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2018

Bạn tự vẽ hình

Gọi H là trung điểm AB =>\(OH\perp AB\) \(\Rightarrow\) OH là k/c từ O đến AB

Trong tam giác vuông OAH: \(OH^2+AH^2=OA^2\Rightarrow OH^2+\left(\dfrac{AB}{2}\right)^2=R^2\)

\(\Rightarrow OH=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\sqrt{13^2-12^2}=5\) cm

b/ \(CD=AB=24cm\)

Gọi K là trung điểm CD \(\Rightarrow OK\perp CD\)

Áp dụng Pitago cho tan giác vuông OKD:

\(OK=\sqrt{OD^2-KD^2}=\sqrt{R^2-\left(\dfrac{CD}{2}\right)^2}=\sqrt{13^2-12^2}=5cm\)

Do \(\left\{{}\begin{matrix}HM\perp KM\\OH\perp HM\\OK\perp KM\end{matrix}\right.\) \(\Rightarrow\) tứ giác OHMK có 3 góc vuông \(\Rightarrow\) OHKM là hcn

\(\Rightarrow HM=OK=5cm\)

\(\Rightarrow\) Để AB=CD thì M nằm trên AB sao cho HM=5cm (có 2 vị trí của M nằm về hai phía điểm H)

16 tháng 11 2018

Nguyễn Việt LâmShurima AzirNguyễn Thanh Hằngsaint suppapong udomkaewkanjanađề bài khó wáMysterious PersonArakawa Whiter@Nk>↑@

23 tháng 8 2021

a, Kẻ OH \(\perp\)AB 

=> OH là đường trung tuyến 

=> \(AH=\frac{AB}{2}=\frac{24}{2}=12\)cm 

Theo định lí Pytago tam giác OHA vuông tại H 

\(OH=\sqrt{AO^2-AH^2}=5\)cm 

a: Gọi OK là khoảng cách từ O đến AB

Suy ra: OK\(\perp\)AB tại K

Xét \(\left(O\right)\) có 

OK là một phần đường kính

AB là dây

OK\(\perp\)AB tại K

Do đó: K là trung điểm của AB

Suy ra: \(KA=KB=\dfrac{AB}{2}=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔOKA vuông tại K, ta được:

\(OA^2=OK^2+KA^2\)

\(\Leftrightarrow OK^2=13^2-12^2=25\)

hay OK=5cm

14 tháng 7 2020

D M A J C O J B

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra : J là trung điểm của AB

Ta được : \(AJ=\frac{1}{2}AB=4cm\)

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 ( OA = R = 5cm )

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có :\(\widehat{I}=\widehat{J}=\widehat{M}=90^o\)nên là hcn

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

13 tháng 5 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có: Để học tốt Toán 9 | Giải bài tập Toán 9 nên là hình chữ nhật

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

25 tháng 4 2017

a) Vẽ OH⊥AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2=OB2−HB2=52−42=9⇒OH=3(cm).

b) Vẽ OK⊥CD. TỨ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI. Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm.

Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

25 tháng 4 2017

a) Vẽ OH ⊥ AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2 = OB2 – HB2 =52 – 42 = 9

⇒ OH = 3(cm).

b) Vẽ OK ⊥ CD. Tứ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI.

Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm. Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.