K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Theo giả thiết: cung AC = cung BD (vì AB // CD) (1)

\(\widehat{AIC}\) = sđ cung AC + cung BD : 2 (2)

Theo (1) suy ra \(\widehat{AIC}\) = sđ cung AC

\(\widehat{AOC}\) = sđ cung AC(góc ở tâm chắn cung AC)

So sánh (3), (4), ta có \(\widehat{AOC}\) = \(\widehat{AIC}\)

6 tháng 4 2017

Giải bài 43 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 43 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 10 2017

Giải bài 43 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9Giải bài 43 trang 83 SGK Toán 9 Tập 2 | Giải toán lớp 9

 

17 tháng 8 2017

a, Từ CA, CM là tiếp tuyến của (O) chứng minh được A,C,M,O ∈ đường tròn bán kính  O C 2

b, Chứng minh OC,BM cùng vuông góc với AM . từ đó suy ra OC//BM

c,  S A C D B = A C + B D A B 2 = A D . A B 2

=>  S A C D B  nhỏ nhất khi CD có độ dài nhỏ nhất

Hay M nằm chính giữa cung AB

d, Từ tính chất hai giao tuyến => AC = CM và BM=MD, kết hợp với AC//BD

ta chứng minh được  C N N B = C M M D => MN//BD => MN ⊥ AB

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC