Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Đường tròn (O) có dây AB = AC
+ là góc có đỉnh ngoài đường tròn chắn hai cung
Kiến thức áp dụng
+ Trong một đường tròn, hai dây bằng nhau căng hai cung bằng nhau.
+ Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.
góc ASC=1/2(sđ cung AB-sđ cung CM)
=1/2(sđ cung AC-sđ cung CM)
=1/2*sđ cungAM
góc MCA=1/2cung AM
=>góc ASC=góc MCA
a) Kẻ OP ⊥ AM, OQ ⊥ BN
Ta có: AM = BN (Giả thiết)
Suy ra: OP = OQ (hai dây bằng nhau cách đều tâm)
Xét hai tam giác OCP và OCQ, ta có:
Góc OPC= góc OQC=90∘
OC chung
OP = OQ (chứng minh trên)
Suy ra: ∆OCP = ∆OCQ (cạnh huyền, cạnh góc vuông)
Góc O1= góc O2
Xét hai tam giác OAP và OBQ, ta có:
Góc OPA= góc OQB=90∘
OA = OB
OP = OQ ( chứng minh trên)
Suy ra: ∆OAP = ∆OBQ (cạnh huyền, cạnh góc vuông)
Góc O3= Góc O4
Suy ra: Góc O1+góc O3= Góc O2+ góc O4 hay Góc AOC= Góc BOC
Vậy OC là tia phân giác của Góc AOB
b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).
Suy ra: OC ⊥ AB.
Ta có: \(\widehat{ASC}=\dfrac{sđ\left(\widehat{AB}-\widehat{MC}\right)}{2}\) (1)
(\(\widehat{ASC}\) là góc có đỉnh nằm bên ngoài đường tròn (O)) và \(\widehat{MCA}=\dfrac{sđ\widehat{AM}}{2}\) (2)
(góc nội tiếp chắn cung \(\widehat{AM}\))
Theo giả thiết thì:
AB = AC => \(\widehat{AB}\) = \(\widehat{AC}\) (3)
Từ (1), (2), (3) suy ra:
\(\widehat{AB}-\widehat{MC}=\widehat{AC}-\widehat{MC}=\widehat{AM}\)
Từ đó \(\widehat{ASC}=\widehat{MCA}\).