K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

1: Xét (O) có 

\(\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABC}=90^0\)

Xét (O') có 

\(\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ABD}=90^0\)

Ta có: \(\widehat{ABC}+\widehat{ABD}=\widehat{CBD}\)

\(\Leftrightarrow\widehat{CBD}=90^0+90^0=180^0\)

hay C,B,D thẳng hàng(đpcm)

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

a: ΔAOM cân tại O 

=>góc OAM=góc OMA

ΔAO'N cân tại O' nên góc O'AN=góc O'NA

mà góc OAM=góc O'AN

nên ΔOAM đồng dạng với ΔO'AN

b: MA/NA=OA/O'A

=>MA/(NA+MA)=MA/MN=OA/(OA+O'A)=2/3

AB//NQ

=>AB/NQ=MA.MN

=>R/NQ=2/3

=>NQ=3R/2 ko đổi

18 tháng 6 2019

HS tự chứng minh

22 tháng 1 2019

a, Sử dụng AQ//O'P

=>  Q A P ^ = O ' A P ^ => Đpcm

b, CP//BR (cùng vuông góc AR)

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)