Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai tam giác BMT và TMA, chúng có:
chung
= (cùng chắn cung nhỏ )
nên ∆BMT ~ ∆TMA, suy ra =
hay MT2 = MA. MB
Gọi bán kính của đường tròn (O) là R
Ta có:MB=MA+AB = MA + 2R
Suy ra: MA =MB – 2R
Ta lại có: M T 2 = MA.MB (cmt)
Suy ra: M T 2 = (MB- 2R).MB = M B 2 – 2R.MB
( góc tạo bởi tia tiếp tuyến và dây cung, góc nội tiếp cùng chắn cung AT)
Kiến thức áp dụng
Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.
a: Xét ΔMTA và ΔMBT có
\(\widehat{MTA}=\widehat{MBT}\left(=\dfrac{1}{2}sđ\stackrel\frown{AT}\right)\)
\(\widehat{TMA}\) chung
Do đó: ΔMTA đồng dạng với ΔMBT
=>\(\dfrac{MT}{MB}=\dfrac{MA}{MT}\)
=>\(MT^2=MA\cdot MB\)
b: \(MT^2=MA\cdot MB\)
=>\(MA\cdot MB=20^2=400\)
=>\(MA=\dfrac{MT^2}{MB}=\dfrac{400}{50}=8\left(cm\right)\)
MA+AB=MB
=>AB+8=50
=>AB=42(cm)
=>R=42/2=21(cm)
bài này dễ mà bạn
có MTA=1/2 sd AT
ABT=1/2 sd AT
\(\Rightarrow\)MTA=MTB
xét tam giác MTA và MBT
M chung
MTA=MTB
tam giác MTA dong dang MBT
\(\Rightarrow\)MT/AB=MA/MT\(\Rightarrow\)MT2=MA.MT