Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
CD là dây cung(C,D∈(O))
B là điểm chính giữa của \(\stackrel\frown{CD}\)(gt)
Do đó: \(\stackrel\frown{CB}=\stackrel\frown{BD}\)
⇒\(sđ\widehat{CB}=sđ\widehat{BD}\)(1)
Xét (O) có
\(\widehat{BMD}\) là góc nội tiếp chắn cung BD(gt)
nên \(\widehat{BMD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BD}\)(Định lí góc nội tiếp)(2)
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC(gt)
nên \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\widehat{CB}\)(Định lí góc nội tiếp)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BMD}=\widehat{BAC}\)(đpcm)
a: góc SAM=góc SAB+góc BAM
góc SMA=góc SCA+góc MAC
mà góc SAB=góc SCA và góc BAM=góc CAM
nên góc SAM=góc SMA
=>SM=SA
b: góc SGO=90 độ
Vì góc SAO=góc SGO
=>SAGO nọpi tiếp
=>góc SGA=góc SOA=1/2*góc DOA=1/2*sđ cung AD
=>góc SAD=góc SGA
=>ΔSAF đồng djng với ΔSGA
=>SA/SG=SF/SA
=>SA^2=SG*SF
Chọn đáp án C.