K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

412 + (340 - x) = 633

23 tháng 5 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Đường tròn c: Đường tròn qua N với tâm O Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, N] Đoạn thẳng m: Đoạn thẳng [B, M] Đoạn thẳng n: Đoạn thẳng [M, E] Đoạn thẳng p: Đoạn thẳng [F, N] Đoạn thẳng q: Đoạn thẳng [M, N] Đoạn thẳng r: Đoạn thẳng [Q, P] Đoạn thẳng s: Đoạn thẳng [P, E] B = (-1.04, 1.22) B = (-1.04, 1.22) B = (-1.04, 1.22) C = (4.1, 1.2) C = (4.1, 1.2) C = (4.1, 1.2) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm N: Điểm trên g Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm O: Trung điểm của k Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm F: Giao điểm của c, j Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm M: Giao điểm của l, h Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm Q: Giao điểm của n, p Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q Điểm P: Giao điểm của c, q

a. Ta thấy do ABCD là hình vuông nên \(\widehat{FCN}=\widehat{MAE}=45^o\)

Lại có \(\widehat{FCN}=\widehat{FBN}\) (Góc nội tiếp cùng chắn cung FN)

Vậy nên \(\widehat{MAE}=\widehat{MBE}\) hay tứ giác AMEB nội tiếp.

b. Do  tứ giác AMEB nội tiếp nên \(\widehat{MEB}=180^o-\widehat{BAM}=90^o\)

Do P thuộc đường tròn (O) nên \(\widehat{MPB}=90^o\Rightarrow\)MPEB nội tiếp.

\(\Rightarrow\widehat{MBP}=\widehat{MEP}\)

Xét tam giác MBP có \(\widehat{MBP}+\widehat{BMP}=90^o\)

Xét tam giác FMN có \(\widehat{QNP}+\widehat{BMP}=90^o\)

Vậy \(\widehat{QNP}=\widehat{MBP}=\widehat{MEP}\)

Vậy tứ giác QPNE nội tiếp hay \(\widehat{QPN}=180^o-\widehat{QEN}=90^o\)

Góc \(\widehat{BPN}=90^o\Rightarrow\) B, Q, P thẳng hàng.

23 tháng 5 2017

Woa vẽ được hình à. Chỉ cho em với chị HOÀNG THỊ THU HIỀN.

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:a) Tứ giác BCDE nội tiếp.b)góc AFE= ACE.Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt...
Đọc tiếp

Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:

a) Tứ giác BCDE nội tiếp.

b)góc AFE= ACE.

Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:

a) Các tam giác KAB và IBC là những tam giác đêu.

b) Tứ giác KIBC nội tiếp.

Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:

a) Tứ giác FNEM nội tiêp.

b) Tứ giác CDFE nội tiếp.

Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC.

a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó

b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn

Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm

0
9 tháng 7 2019

A B O O' C D E F I M N J

+) Chứng minh tứ giác BCID nội tiếp ?

Ta có: ^BCE = ^BAE; ^BDF = ^BAF. Do ^BAE + ^BAF = 1800 nên ^BCE + ^BDF = 1800

=> ^BCI + ^BDI = 3600 - ^BCE - ^BDF = 1800 => Tứ giác BCID nội tiếp (đpcm).

+) Chứng minh IA là phân giác góc MIN ?

Gọi đường thẳng AB cắt CD tại J. Ta thấy: JC là tiếp tuyến từ điểm J tới (O), JAB là cát tuyến của (O)

Suy ra JC2 = JA.JB (Hệ thức lượng đường tròn). Tương tự JD2 = JA.JB

=> JC = JD. Áp dụng hệ quả ĐL Thales ta có \(\frac{AM}{JC}=\frac{AN}{JD}\left(=\frac{BA}{BJ}\right)\)(Vì EF // CD) => AM=AN (1) 

Mặt khác: ^ADC = ^AFD = ^IDC, ^ACD = ^CEA = ^ICD. Từ đó \(\Delta\)CAD = \(\Delta\)CID (g.c.g)

=> CI = CA và DI = DA => CD là trung trực của AI => CD vuông góc AI

Mà MN // CD nên IA vuông góc MN (2)

Từ (1) và (2) suy ra IA là trung trực của MN => \(\Delta\)MIN cân tại I có IA là trung trực cạnh MN

=> IA đồng thời là phân giác của ^MIN (đpcm).