K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

a. Vì \(CE\perp MA\)tại E (gt) => \(\widehat{AEC}=90^o\)

\(CD\perp AB\)tại D=> \(\widehat{ADC}=90^o\)

Xét tứ giác AECD có: \(\widehat{AEC}+\widehat{ADC}=90^o+90^o=180^o\)=> AECD là tứ giác nội tiếp đt \((G,R=\frac{AC}{2})\)trong đó G là trung điểm của AC (dhnb)

Cmtt ta có: BFCD là tứ giác nội tiếp đt \((H,R=\frac{BC}{2})\)trong đó H là trung điểm của BC

b. 

Vì AECD là tứ giác nội tiếp (cmt) => \(\widehat{EAC}=\widehat{EDC}\)(2 góc nội tiếp cùng chắn \(\widebat{EC}\)) (1)

Do MA là tiếp tuyến của đt(O) (gt)=> \(\widehat{EAC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc tạo bởi tiếp tuyến và dây cung)

Xét đt (O) có: \(\widehat{ABC}=\widehat{DBC}=\frac{1}{2}sđ\widebat{AC}\)(t/c góc nội tiếp) => \(\widehat{EAC}=\widehat{DBC}\)(2)

vì BFCD là tứ giác nội tiếp => \(\widehat{DBC}=\widehat{DFC}\)(2 góc nội tiếp cùng chắn \(\widebat{DC}\)) (3)

Từ (1),(2) và (3) => \(\widehat{EDC}=\widehat{DFC}\)

do AECD là tứ giác nội tiếp (cmt) => \(\widehat{CED}=\widehat{CAD}\)(2 góc nội tiếp cùng chắn \(\widebat{CD}\)) (4)

Vì MB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{CBF}=\frac{1}{2}sđ\widebat{BC}\)(T/c góc tạo bởi tiếp tuyến và dây cung)

Xét đt (O) có: \(\widehat{BAC}=\widehat{DAC}=\frac{1}{2}sđ\widebat{BC}\)(t/c góc nội tiếp) => \(\widehat{CBF}=\widehat{DAC}\)(5)

lại có: BFCD là tứ giác nội tiếp (cmt) => \(\widehat{CBF}=\widehat{CDF}\)(2 góc nội tiếp cùng chắn \(\widebat{CF}\)) (6)

Từ (4), (5) và (6) => \(\widehat{CED}=\widehat{CDF}\)

Xét \(\Delta ECD\)và \(\Delta DCF\)có:

\(\widehat{CED}=\widehat{CDF}\)(Cmt)

\(\widehat{EDC}=\widehat{DFC}\)(Cmt)

=> \(\Delta ECD~\Delta DCF\)(g.g) => \(\frac{EC}{DC}=\frac{CD}{CF}\Rightarrow CD^2=CE\times CF\)(Đpcm)

c. Vì I là giao điểm của AC và DE (gt) => \(I\in AC\)

K là giao điểm của BC và DF (gt) => \(K\in BC\)

=> \(\widehat{ICK}=\widehat{ACB}\)

Vì \(\widehat{EDC}=\widehat{ABC}\left(cmt\right)\Rightarrow\widehat{IDC}=\widehat{ABC}\left(do\overline{E,I,D}\Rightarrow\widehat{EDC}=\widehat{IDC}\right)\)

\(\widehat{CDF}=\widehat{BAC}\left(cmt\right)\Rightarrow\widehat{CDK}=\widehat{BAC}\left(do\overline{F,K,D}\Rightarrow\widehat{CDF}=\widehat{CDK}\right)\)

Xét tứ giác ICKD có : \(\widehat{ICK}+\widehat{IDK}=\widehat{ICK}+\widehat{IDC}+\widehat{CDK}=\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\)

(Áp dụng định lý tổng 3 góc trong \(\Delta ABC\)ta có: \(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\))

=> Tứ giác ICKD là tứ giác nội tiếp (dhnb) => 4 điểm I,C,K,D cùng thuộc 1 đường tròn (đpcm)

d. Vì ICKD là tứ giác nội tiếp (cmt) => \(\widehat{CIK}=\widehat{CDK}\)(2 góc nội tiếp cùng chắn \(\widebat{CK}\))

Lại có: \(\widehat{CDK}=\widehat{BAC}\)(Cmt)  => \(\widehat{CIK}=\widehat{BAC}\)mà 2 góc này ở vị tri đồng vị => IK // AB (Dhnb)

Do \(CD\perp AB\left(gt\right)\)=> \(IK\perp CD\)(Quan hệ tính vuông góc và tính song song của 3 đt)

10 tháng 2 2019

Bạn cho mình hỏi ở phần nào đk ?

15 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

24 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC) (2)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung CB) (5)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

1 tháng 1 2019

1) Hình vẽ câu 1) đúng

Ta có  A E C ^ = A D C ^ = 90 0 ⇒ A E C ^ + A D C ^ = 180 0  do đó, tứ giác ADCE nội tiếp.

2) Chứng minh tương tự tứ giác BDCF nội tiếp.

Do các tứ giác A D C E ,   B D C F  nội tiếp nên  B 1 ^ = F 1 ^ , A 1 ^ = D 1 ^

Mà AM là tiếp tuyến của đường tròn (O) nên  A 1 ^ = 1 2 s đ A C ⏜ = B 1 ^ ⇒ D 1 ^ = F 1 ^ .  

Chứng minh tương tự  E 1 ^ = D 2 ^ .  Do đó,  Δ C D E ∽ Δ C F D g.g

3) Gọi Cx là tia đối của tia CD

Do các tứ giác  A D C E ,   B D C F nội tiếp nên  D A E ^ = E C x ^ , D B F ^ = F C x ^  

M A B ^ = M B A ^ ⇒ E C x ^ = F C x ^  nên Cx là phân giác góc E C F ^ .

4) Theo chứng minh trên  A 2 ^ = D 2 ^ , B 1 ^ = D 1 ^  

Mà  A 2 ^ + B 1 ^ + A C B ^ = 180 0 ⇒ D 2 ^ + D 1 ^ + A C B ^ = 180 0 ⇒ I C K ^ + I D K ^ = 180 0  

Do đó, tứ giác CIKD nội tiếp  ⇒ K 1 ^ = D 1 ^   D 1 ^ = B 1 ^ ⇒ I K / / A B

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái