Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đính chính, viết nhầm f(x) = g(x) + 3 lại viết nhầm thành f(x) = g(x) = 3. xin chữa lại, Xin lỗi các bạn
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
1. MCOD nội tiếp đường tròn (+2 góc đối nhau =180o)
=> đpcm
2. OAI = OBI (c.g.c)
=> ^AOI = ^BOI
=> OI là phân giác cx là trung tuyến
=> OI là đường cao
=> ^OIA = 90o
=> ^OIM = 90o
OIDM nội tiếp (OIM =ODM = 90o)
=> KOD = KMI
.................=> tg KMI ~ tg KOD
=> đpcm....
1: Xét (O) có
OH là một phần đường kính
AB là dây
H là trung điểm của AB
Do đó: OH⊥AB
Xét tứ giác MDOH có
\(\widehat{MDO}+\widehat{MHO}=180^0\)
Do đó: MDOH là tứ giác nội tiếp