Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên AO là trung trực của BC
=>AO vuông góc BC
góc EBC=1/2*180=90 độ
=>EB vuông góc BC
=>AO//EB
b: Xét ΔMAD và ΔMBA co
góc AMD chung
góc MDA=góc MAB
=>ΔMAD đồng dạng với ΔMBA
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
=>OA là trung trực của BC
=>OA vuông góc BC tại I
b: ΔOBA vuông tại B có BI vuông góc OA
nên OI*IA=BI^2=BC^2/4
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chug
=>ΔABD đồng dạng với ΔAEB
=>AB/AE=AD/AB
=>AB^2=AD*AE=AH*AO
a: Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
=>OBAC là tứ giác nội tiếp
M làtrung điểm của OA
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của CB
=>OA vuông góc BC
c: ΔOEF cân tạiO
mà OK là trung tuyến
nên OK vuông góc EF
=>góc OKA=góc OBA=góc OCA=90 độ
=>O,K,A,B,C cùng thuộc 1 đường tròn
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
=>ABOC là tứ giác nội tiếp
b: Xét ΔABE và ΔAFB có
góc ABE=góc AFB
góc BAE chung
=>ΔABE đồng dạng với ΔAFB
=>AB/AF=AE/AB
=>AB^2=AF*AE
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
b: DE//CF
=>sđ cung CD+sđ cung EF
góc AIB=1/2(sđ cung BD+sđ cung EF)
ABOC nội tiếp
=>góc AOB=góc ACB=1/2*sđ cung BC
=1/2(sđ cung EF+sđ cung EB)
=>góc AIB=góc AOB
=>AOIB nội tiếp
=>góc OIA=90 độ
ΔODE cân tại O
mà OI là đường cao
nên I là trung điểm của DE
khúc cuối câu b không nhất thiết phải dùng tam giác cân nha. Có OIA= 90 độ thì có thể dùng định lí 3 dòng để suy ra trung điểm nè
a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
b: Xét ΔABF và ΔAEB có
góc ABF=góc AEB
góc BAF chung
=>ΔABF đồng dạng với ΔAEB
=>AB/AE=AF/AB
=>AB^2=AE*AF