K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOBC cân tại O

mà OM là đường trung tuyến

nên OM\(\perp\)BC tại M

Xét tứ giác KAOM có

\(\widehat{OAK}+\widehat{OMK}=90^0+90^0=180^0\)

=>KAOM là tứ giác nội tiếp

=>K,A,O,M cùng thuộc một đường tròn

b: AH\(\perp\)BC

OM\(\perp\)BC

Do đó: AH//OM

Xét ΔNAH có

O là trung điểm của NA

OM//AH

Do đó: M là trung điểm của NH

Xét tứ giác BHCN có

M là trung điểm chung của BC và HN

=>BHCN là hình bình hành

c: Xét (O) có

ΔACN nội tiếp

AN là đường kính

Do đó: ΔACN vuông tại C

=>CN\(\perp\)CA

BHCN là hình bình hành

=>BH//CN

Ta có: BH//CN

CN\(\perp\)CA

Do đó: BH\(\perp\)AC

Xét ΔABC có

BH,AH là các đường cao

BH cắt AH tại H

Do đó: H là trực tâm của ΔABC