Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, OM = R 2
c, MC. MD = M A 2 = MH.MO
=> MC. MD = MH.MO
=> DMHC ~ DMDO (c.g.c)
=> M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp
Chứng minh được: M H C ^ = O H D ^
=> C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)
a: Xét (O) có
AM là tiếp tuyến
BM là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM\(\perp\)AB
Xét tứ giác MHIK có \(\widehat{MHK}=\widehat{MIK}=90^0\)
nên MHIK là tứ giác nội tiếp
b: Xét ΔMAE và ΔMIA có
góc MAE=góc MIA
góc AME chung
Do đó: ΔMAE\(\sim\)ΔMIA
Suy ra: MA/MI=ME/MA
hay \(MA^2=ME\cdot MI\)