K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAO vuông tại A có \(cosAOB=\dfrac{OA}{OB}=\dfrac{1}{\sqrt{2}}\)

=>\(\widehat{AOC}=45^0\)

=>\(sđ\left(OA;OC\right)=45^0\)

b: Số đo cung AC nhỏ là:

\(sđ\stackrel\frown{AC}=45^0\)

Số đo cung AC lớn là:

3600-450=3150

3 tháng 3 2021
answer-reply-image Good luck~
8 tháng 10 2023

là \(\sqrt{2}\)R ko phải R\(\sqrt{2}\) hum

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

27 tháng 11 2021

                                                           bài làm

a, gọi H là tiếp điểm của tiếp tuyến MN 

theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ

vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH

b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M

⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)

theo giả thuyết 2 tiếp tuyến HN cắt BN tại N

⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)

Theo hệ thức lượng trong tam giác vuông: OI^2=MI.INOH2=MH.HNAM.BN=MI.NI=OI^


Vì vậy AM.BN=MI.NI=OI^2=R^2AM.BN=MH.NH=
\(OH^2\)
=\(R^2\)


 

 

 

 

a: Ta có: ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

=>\(AM=R\sqrt{3}\)

b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)

nên \(\widehat{MOA}=60^0\)

=>\(\widehat{AON}=60^0\)

=>\(\widehat{\left(ON;OA\right)}=60^0\)

c: Xét (O) có

\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ

Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)

Số đo cung lớn AN là:

\(360-60=300^0\)

Xét ΔOBA vuông tại A có \(cosBOA=\dfrac{OA}{OB}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔOAC có OA=OC và \(\widehat{AOC}=60^0\)

nên ΔOAC đều

=>\(sđ\stackrel\frown{AC}\left(nhỏ\right)=60^0\)

Số đo cung AC lớn là: 

\(360-60=300^0\)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0