K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Xét tg vuông OAC và tg vuông OMC có

OC chung 

OA=OM=R

\(\Rightarrow\Delta OAC=\Delta OMC\) (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{OCA}=\widehat{OCM}\) (1)

Ta có

CA=CM => tg CMA cân tại C (2)

Từ (1) và (2) \(\Rightarrow AM\perp OC\) (trong tg cân đường phân gics của góc ở đỉnh đồng thời là đường cao)

Xét tg vuông OAC có

\(OA^2=R^2=OH.OC\) (trong tg vuông bình phương cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

5 tháng 2 2020

https://www.youtube.com/channel/UCU_DXbWfhapaSkAR7XsK5yQ?view_as=subscriber

5 tháng 2 2020

Gọi OD cắt (O) tại E,F \(\left(E\in DF\right)\)ta có:

     \(\widehat{DAE}=\widehat{DFM}\)(cùng bù với \(\widehat{MAE}\))

     \(\widehat{ADE}=\widehat{FDM}\)(chung)

Do đó \(\Delta DAE\text{~}\Delta DFM\text{ }\left(g.g\right)\)

\(\Rightarrow\frac{DA}{DF}=\frac{DE}{DM}\)

\(\Rightarrow DA.DM=DE.DF\)

\(=\left(DO-OE\right)\left(DO+OF\right)=\left(DO-OM\right)\left(DO+OM\right)=DO^2-OM^2\)(đpcm)

27 tháng 12 2017

b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)

 tam giác AON = tam giác MON (c.c.c)

=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến

c) có NM Là tiếp tuyến (câu b)

=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)

có O1+O2+O3+O4 = 180đ

=> O2+O3 = 90đ

=> tam giác NOD vuông tại O

Xét tam giác vuông NOD, đường cao OM

=> tam giác OMN đồng dạng với tam giác DMO

=> \(\frac{NM}{OM}=\frac{OM}{MD}\)

=>\(\frac{AN}{OM}=\frac{OM}{DB}\)

=> AN.BD=\(R^2\)

d) có AN.BD=\(R^2\)

=> 2AN . BD = 2 R.R

=>AC.BD = AB . OA

=>\(\frac{AC}{AB}=\frac{OA}{BD}\)

=> tam giác AOC đồng dạng với tam giác BDA

=>góc AOC = góc ADB

Gọi K là giao điểm của AD và OC

=> tam giác AOK đồng dạng ADB (g.g)

=>góc OKA = góc DBA = 90đ

=> \(AD\perp OC\)