Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
b: HK//BF
BF vuông góc BE
=>HK vuông góc BE
AO là trung trực của BC
mà AO cắt (O) tại E
nên EB=EC
=>sđ cung EB=sđ cung EC
góc HBE=1/2*sđ cung EC
góc KBE=1/2*sđ cung BE
mà sđ cung EC=sđ cung BE
nên góc HBE=góc KBE
=>BE là phân giác của góc HBK
Xét ΔBKH có
BE vừa là đường cao, vừa là phân giác
=>ΔBKH cân tại B
Xét ΔBHE và ΔBKE có
BH=BK
góc HBE=góc KBE
BE chung
=>ΔBHE=ΔBKE
=>góc BKE=90 độ
=>EK vuông góc AB