K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AMB=1/2*sđ cung AB=90 độ

góc BMD+góc BCD=180 độ

=>BMDC nội tiếp

b: Xét ΔAMB vuông tại M và ΔACD vuông tại C có

góc MAB chung

=>ΔAMB đồng dạng với ΔACD

=>AM/AC=AB/AD

=>AM*AD=AB*AC=6R^2

c: góc ADC=90-30=60 độ

15 tháng 4 2020

Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H

a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.

b/ Chứng minh : OM // AH

c/ Chứng minh : AB.AE = AC.AD

d/ Gọi K là điểm đối xứng của H qua M .

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
25 tháng 4 2016

o A B M C D I

a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\)  nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.

b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà  \(CM \perp AB\)  nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).

\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)

Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)

Chúc em học tốt ^^

21 tháng 3 2015

câu c hình như bn nhầm đỉnh tứ giác thì phải

d) bn cm ED là phân giác góc AEB (giống câu a) rồi dùng t/c phân giác trog và ngoài của tg AEB nhé

17 tháng 5 2016

kho qua

23 tháng 5 2021

a. xét (O):

sđ : \(\widehat{AB}=180\) (cung chắn nửa đường tròn)

sđ \(\widehat{AC}=sđ\widehat{BC}=\dfrac{1}{2}sđ\widehat{AB}\)

\(sđ\widehat{AC}=sđ\widehat{BC}=90\)

mà \(\widehat{AC}=\widehat{AOC}\)⇒ \(\widehat{AOC}=90\)

\(\widehat{AIC}=90\) ⇒ \(\widehat{AOC}=\widehat{AIC}\)

⇒ tứ giác ACIO nội tiếp

\(\Delta AOC\) vuông tại (O)     (\(\widehat{AOC}=90\))

OA=OC=R    (A;C ϵ (O;R))

⇒ΔAOC vuông cân

\(\widehat{CAO}=45\)   (t/c tam giác vuông cân)

mà \(\widehat{CAO}+\widehat{CIO}=180\)

\(\widehat{CIO}=180-45=135\)

\(\widehat{CIO}+\widehat{OID}=180\)      (t/c kề bù)

\(\widehat{OID}=180-135=45\)

 

 

23 tháng 5 2021

b.ACIO nội tiếp    (cmt)

\(\Rightarrow\widehat{A_1}=\widehat{O_1}\)   ( 2 góc nội tiếp chắn \(\widehat{CI}\))

xét (O):

\(\widehat{A_1}=\dfrac{1}{2}\widehat{COM}\)     (t/c đường tròn)

mà \(\widehat{A_1}=\widehat{O_1}\)

\(\widehat{O_1}=\dfrac{1}{2}\widehat{COM}\)     

OI nằm giữa OC và OM

⇒OI là tia phân giác của \(\widehat{COM}\)